

Universal Login Script

Configuration Guide

Version 2.8.7

2014/10/10

KiXtart Universal Login Script – Version 2.8.7

Trademarks

This product employs components covered under Public Domain or GPU licenses. These components are

included freely with the installation suite as a convenience. It is strongly recommended that the current versions

of these components be downloaded and their licenses reviewed before use.

KiXtart www.kixtart.org Administrative scripting tool

KixForms www.kixforms.org GUI interface for KiXtart

This documentation may contain references or links to third-party web sites. These sites are not under the

control of Innovative Technology Consulting Group or its principals, and Innovative Technology Consulting

Group is not responsible for their content. Access to any third-party website or facility is performed solely at the

user’s discretion and risk.

Copyright

This application and its documentation are Copyright 1995-2013 by Glenn Barnas / Innovative Technology

Consulting Group. All rights reserved. This document may not be altered or reproduced without the express

written permission of Innovative Technology Consulting Group.

Restricted Use

This product can be used freely for personal or commercial purposes so long as all copyright notices remain in

place. No part of this product or documentation can be sold or used in the sale of any commercial product or

service without the express written agreement of Innovative Technology Consulting Group.

Use in environments with five or more domain controllers requires the purchase of an enterprise license.

Connect to http://www.innotechcg.com/register or email sales@innotechcg.com to purchase a license pack.

Acknowledgements

Thanks to the following people for their support, feedback, and suggestions for making this product the best it

can be:

Tony Kwan, Usul, Stephen Burke, Vincent, and all the rest of you that took the time to provide feedback and

suggestions over the years…

© 1995-2014 • Glenn Barnas / Innovative Technology Consulting Group

i

Contents
Introduction ... 1

Overview ... 2

Theory of Operation .. 2

Special Capabilities & Features .. 3

Config-File Caching.. 3

Multiple Config-File Selection Methods .. 3

Configuration Sets .. 3

Internationalization ... 3

AD Attribute-Based Authorization ... 4

User-Defined Resource Processing... 4

Value Rewriting .. 4

Secondary Drive Paths (D-R/B-C).. 4

Local Default Printer... 4

Diagnostic Logging ... 4

Licensing ... 6

The License Process .. 6

Unlicensed Operation & Testing .. 6

Installation, Configuration, & Testing .. 7

Pre-Deployment Considerations ... 8

System Policy Settings .. 8

Login (profile) Vs. Logon (GPO) Scripts ... 8

The Login Configuration File ... 9

Locating the Configuration File .. 9

Alternate Config-File Selection Methods ... 10

Selection by Command Line Argument ... 10

Selection by Group Membership .. 10

Selection by Client Computer ... 10

Selection by User ID ... 10

The COMMON Configuration Parameter Section ... 11

The GROUP_BASED_CONFIG Section ... 14

ii

The DEFAULTPRINTER Section ... 14

Resource Records.. 15

Resource Record Format... 15

Resource Core Parameters .. 16

Resource Access-Management Parameters .. 18

Special Resource Parameters .. 20

Group and OU Processing .. 23

Active Directory Attribute Processing .. 24

Combined Logic of Group, OU, and AD Attribute Parameters 24

Connection Processing – CAUTION! .. 25

Value Rewriting & Lookup Records .. 26

Value Rewrite Types... 27

Lookup Value Recursion .. 29

Special Consideration for OU-Based Rewriting ... 29

Rewriting for DESC values .. 30

Compound Rewrites.. 30

Special Consideration for Subnet Rewriting... 31

Custom Resource Processing .. 32

Resource Processing Concepts ... 32

Configuring User-Defined Resource Processing .. 33

Using the UserProcess.Kix File .. 33

Customizing Language-Specific Messages .. 34

Sample .LNG Message File .. 35

The Standard Display Screen .. 36

Customizing the Initial Display Screen .. 36

Performance Logging.. 38

Debugging ... 39

Level 1 Debugging .. 39

Diagnosing Problems .. 45

Level 2 Debugging .. 47

Error Logging.. 47

Performance Analysis ... 47

iii

Performance Logging Example .. 48

Configuration Examples ... 50

Basic Configuration Scenarios .. 50

Process a Resource for All Users .. 50

Display Alert for All Admins ... 50

Process a Resource for Members of One or More Groups ... 50

Process a Resource for Multiple Group Membership ... 50

Process a Resource via AD Attribute .. 51

Process a Resource Based on OU ... 51

Process a Resource Based on Group and OU ... 51

Displaying a Message During Logon ... 51

Running a Command .. 52

Acceptable Use Policy Message ... 53

Advanced Configuration Scenarios .. 54

Configuring Branch Office or Department Shares with Value Rewrite 54

Adding a Second Department to an Existing Share .. 55

Using Configuration Sets .. 55

Alternate or Sub-Folder Mapping ... 55

Gross Access Filtering – Admin, Guest, or NoGuest ... 56

Compound Value Rewrites ... 57

Group Based Config-File Selection .. 58

GUI Administration Console .. 59

Technical Support ... 62

Feedback ... 62

Support .. 62

Appendix 1 .. 63

Language Locale IDs .. 63

Appendix 2 .. 66

Common AD Attributes .. 66

1

Introduction
The Universal Login Script was developed with the original release of 16-bit KiXtart in

1995. It’s called "universal" because it has been used at dozens of companies without the

need for code modification since 1996. Of course, there have been enhancements over time

to take advantage of new Kixtart functionality, and enhanced capabilities, but the core

concepts of tight code and flexible operation have remained.

During 2006, the code was completely rewritten to meet our stringent coding standards. The

original logic was preserved, but the script itself was made more modular and the subroutines

were converted to UDFs. The INI file format was also updated to use a more flexible format

of resource records.

With over 18 years of deployment history in organizations both large and small, the

Universal Login Script can accommodate almost any situation. It offers sophisticated

capabilities to authorize access; powerful data rewriting to increase flexibility; and extensive

logging and debugging features to aid in implementation and support. It can display

messages in multiple languages, even adding new languages in just minutes. It supports

custom messages or even no display at all, can process drive and printer connections, display

network messages, and run commands all without writing a single line of code.

Some key capabilities of the Universal Login Script include

 Authorize access to resources by user privilege type, Active Directory Group or OU

membership, Computer OU membership, AD Attribute, or custom-coded attributes

such as workstation name.

 Connect to disk and printer resources.

 Display text messages with user-definable delays.

 Run commands – even other Kixtart scripts that can use the functions in the core

script! Commands can be run synchronously or asynchronously with the login

process for utmost flexibility.

 Alter the server, share, or path of a resource based on UserID, User OU, Computer

OU, Site, or network subnet via Value Rewriting technology.

 Control mapping based on Desktop or Laptop computer types or console, RDP, or

Citrix (ICA) logon sessions.

 Config files can be defined per site, computer, or even per user for maximum flexibility.

 Multiple configuration sets can be defined in a single configuration file, allowing

both common and site or region-specific settings to be maintained centrally.

 Alternate-path mapping for disk resources for DR resiliency.

 “Code-free” configuration – no scripting knowledge is necessary to deploy a

sophisticated login script. Simply define Resource Records, test, and deploy.

 Display messages in alternate languages, including user-defined messages.

 Extensive documentation and examples, and a GUI Admin Console.

 Free and Paid support options get you up and running quickly and keep you running.

A login script is the one administrative tool that touches every user on your network. It

should be reliable, flexible, and robust, all while being unobtrusive. This is exactly what the

Universal Login Script provides.

2

Overview
The Universal Login Script package consists of three core files - the Kix32.exe script

interpreter, the Kixtart.kix login script, and the login.ini configuration file. All of these files

must reside in the same folder within the netlogon share, where they can be replicated to all

other Domain Controllers in your environment.

The script also supports several optional files that extend the capabilities of the core script.

These optional files include one or more LSL_###.LNG to provide custom language message

files; the UserProcess.kix script to perform custom authorization processing, and the

UserDisplay.kix script to display a custom welcome screen. Additional configuration files

may be present as well.

Theory of Operation

Here is the basic theory of operation:

 The script is invoked by running Kix32.exe. The script engine looks for Kixtart.kix in

the folder where it was started.

 The login script looks in the startup (netlogon) folder first for a configuration file. It

will look for a common file, a file specified on the command-line, a group-based file,

a computer specific file, and then a user-specific file in that order.

 The script checks the user’s TEMP folder for a copy of the config file. If it is not

present or is different than the one on the server, the server’s config file is copied to

the local computer, effectively caching the configuration.

 Operational parameters such as the preferred message language, connection type,

domain name restrictions, and message suppression are loaded from the config file.

 If present, UserProcess.kix is loaded and initialized.

 Additional language files are loaded to display messages in the user’s language.

 If messages are not suppressed, the welcome screen is displayed using either internal

language-specific messages or the optional, external UserDisplay.kix script.

 If enabled, previous disk and printer resources are disconnected.

 The entire config file is parsed. The resource records are evaluated to determine if the

user is authorized to access them. Any unauthorized record is ignored, and the rest are

queued for processing. Note that the login script determines if a user is authorized to

connect to the resource, not actually access the data it contains.

 The authorized resources are processed – drives are mapped; printers are connected;

messages are displayed; and commands are run. If messages are authorized, they will

be displayed even if output is suppressed. If a drive resource is associated with a drive

letter that is already mapped (eg: persistent connection), the prior mapping is

removed and the new path is mapped. This behavior is not configurable. Also note

that if multiple disk resources are mapped to the same drive letter, the last connection

will prevail unless connection priorities are defined.

 If any connection or processing errors have occurred, a message is displayed

recommending a call to the help desk, along with the error messages. These error

messages are displayed even if message display is suppressed.

3

Special Capabilities & Features
There are several special capabilities that the Universal Login Script offers that are not found

in other login scripts or would take significant effort to code into your own script. These

features might improve performance, extend the usability in larger environments, or help

identify process and configuration issues.

Config-File Caching

The login.ini file is cached on the local user’s computer to improve processing of resources,

particularly across WAN links. Once the script determines whether a user or system config

file will be used, it checks the local computer for a copy of that file. If the local file does not

exist, or is different than the one on the server, the file is copied from the server to the local

system, where it is used directly until it needs to be updated again. Note that any

modification of a local config file will cause the server copy to be downloaded when the

script is invoked. This prevents users from running an unauthorized configuration.

Multiple Config-File Selection Methods

A user-specific configuration file is associated with a User ID and is the highest priority for

configuration file selection

A configuration file can be associated with a specific computer and is the second-highest

priority. This method is useful for special purpose computers or Remote Desktop/Citrix

environments where a configuration must be modified or replaced. Computer-specific files

are merged with the primary configuration file by default but can be configured to replace it

completely. In merge mode, resources in the computer-specific file have priority.

A configuration file can be specified on the command-line.

Group-based selection allows a configuration file to be selected based on a user’s

membership in an AD group. This can provide a more dynamic solution than specifying a

config file name or configuration set name on the command line. Due to extra overhead this

method is designed primarily for temporary use during login script migrations.

Configuration Sets

A configuration set (CFGSET) allows a single config file to contain resources common to all

users as well as resources relative to a specific collection of users. This would be useful to

connect a resource based on an application that a user requires, possibly overriding other

resources matched by Group or OU attributes.

Internationalization

The Universal Login Script natively supports message display in five languages, and can

support additional languages through the use of .LNG files. User messages are automatically

displayed in the native language (where available) based on the user’s LOCALE setting, and

default to English if a language is not available. Debug and Log messages are always written

in English.

4

AD Attribute-Based Authorization

Resources can be authorized by AD Attribute, allowing resources to be connected based on

attribute values such as Department Name, City, or any other AD/LDAP attribute.

User-Defined Resource Processing

Customized resource processing can provide environment-specific methods of resource

authorization. As each resource record is processed, all standard authorization evaluations are

performed. Then, if the user-defined function is active, it is called so custom evaluations can

be processed. Only one function is available, but it can be written to provide different

functionality depending on the resource class, and even adjust based on custom resource

values. This provides a high degree of customized control with a minimum of programming.

One application for the user-defined process is machine-based processing. In a school, for

example, computers might need classroom-specific resources. Those resources can now be

bound to the machine instead of a user by granting access based on computer name or name

fragment if the computer name includes the room ID.

Value Rewriting

Value Rewriting allows a macro to be placed in a UNC path or text description, allowing that

value to be dynamically modified based on a broad set of parameters. This feature can reduce

the number of resource records and would eliminate hundreds of “If” statements from the

script if you wrote it from scratch. Rewriting can be done based on User, Computer

hostname, OU, Computer OU, IP Subnet, and AD Attribute, and support both direct

replacement and table-based lookups of replacement values.

Secondary Drive Paths (D-R / B-C support)

The path to a disk resource defined in the config file can actually contain multiple paths

delimited with a semicolon. During normal operation, the connection is made to the first

path. If the primary connection fails, the additional paths are tried until one succeeds. If no

path connections are made, an error message is displayed. A simple solution for disaster-

recovery and business continuity operations.

Local Default Printer

The ability to set a locally attached printer as the default is available by defining a local

environment variable. Since the login script does not “map” this local printer, there is no

resource record associated with it. The computer must employ a locally-defined System

Environment variable called “DPRINTER”, and it must contain the exact printer name to be

set as the default. This feature is especially useful when a user has a local printer for security

or confidentiality reasons. It can also be used to override the selection of network printers, as

this parameter has the highest priority when defining a printer’s default status.

Diagnostic Logging

In-depth logging is available for testing, troubleshooting, and performance analysis.

A debug file – LoginDebug.log – records the results of all procedures related to parsing,

authorizing, and accessing of resources. This is instrumental in validating complex

authorization parameters in the configuration file.

5

An error log – LoginErrs.log – is created automatically whenever a login script detects an

error connecting to a resource. This log lists the date & time, the process being run (ie: Drive

Map D: to \\server\share), and the resulting error message.

A performance log – LoginPerf.log – records timestamps as the script runs with 15-

millisecond accuracy. This helps identify bottlenecks in the configuration, problems with

network resources, and slow-running external commands.

6

Licensing
The Universal Login Script is licensed for unrestricted use in Active Directory domains with

up to 4 domain controllers. In environments with more than 4 Domain Controllers, an

enterprise license must be purchased. Connect to http://www.innotechcg.com/register to

purchase a license pack. Purchases can be paid through most major credit cards or PayPal.

Corporate purchase orders are accepted from most major corporations and educational

institutions. Send an email to sales@innotechcg.com with your purchase request.

Current pricing can be found on the registration page. We strive to make our products cost

effective for environments of any size. Licensed users get 2 additional support instances and

priority response to support requests for the year following the purchase.

Licensing fees are based on a core of 5 licenses and then expansion packs of 5 additional

licenses. Discounts are applied to volume purchases of expansion packs up to an unrestricted

license for 50 or more domain controllers in a single domain.

The License Process

To obtain a license key, generate a license key request by running
 kix32.exe kixtart.kix --lkr

from a command prompt in the directory where the script is located. The script will generate

a License Key Request string consisting of three sets of 8 digits. It will also display the

number of licenses required for your environment (in multiples of 5). If you are near or at the

required number of licenses, the screen will display a message recommending an additional

license pack be purchased.

Browse to the registration URL shown above and enter the License Key Request string. After

entering the string, the display updates to allow selection of the minimum or desired number

of licenses. Enter your email address – it is important that this be entered correctly as the

license key will be sent automatically to this email address after payment is authorized. After

verifying the information, you will be brought to a secure screen where you can enter credit

card or PayPal data to complete your purchase. Upon validation, the license key will be

emailed, usually within 60 minutes.

If you do not receive your license key within a reasonable time, forward a copy of the

License Key Request string and your payment validation to support@innotechcg.com.

You will receive a license key file called LoginScript.lic – place this file in the same location

as the Kixtart script. If you use multiple folders to manage login script configurations, place a

copy of the license file in each folder. Licenses are domain wide but must be located in the

same folder that the script starts from. The key can also be placed into the config.ini file.

Unlicensed Operation & Testing

In environments where a license is needed for operation, the script will run in debug mode

during logon, writing all events to a log file. For functional testing, the script can be invoked

manually after logon and will function normally, mapping all resources and performing all

functions. This allows complete capability for testing and operational validation.

http://www.innotechcg.com/register
mailto:sales@innotechcg.com
mailto:support@innotechcg.com

7

Installation, Configuration, & Testing
Installing the login script is quite simple, and begins by using an off-line location to develop

and test your configuration file.

1. Start by extracting the distribution files to an empty development directory. Place a

copy of Kix32.exe (downloaded separately) into the same directory.

2. Copy the appropriate compiled script to Kixtart.kix. The scripts extracted from the

ZIP are named Kixtart_x.xx.KIX, representing the version of Kixtart that the script

was compiled with. The same source code is used, but minor differences in the

compiled output require version-specific files to be produced.

3. Make sure that a DEBUG.TXT file exists in the development folder. This will force

the login script to run in a special (Level 2) debug mode, which will only display the

resource names and not actually process them. It will also force the script to use the

login.ini file from the current directory, where you would be developing the

configuration file. Normally, the login.ini file will be loaded from the same folder as

where Kix32.exe was invoked. This also prevents the use of any cached copy of the

configuration file.

4. Review the documentation related to defining resource records. Examine the sample

login.ini file to gain an understanding of how the resource records work. You can run

the KIX32 command right after extraction and the sample configuration file will be

parsed in debug mode. Very few of the resources will be authorized because the

sample configuration has generic Group and OU names. Change some of the

parameters to use names valid for your environment for a better demonstration.

5. Create a new login.ini file using the sample provided and edit it to meet your

requirements. Much of the COMMON section can be used as-is or with minor

parameter changes. Launch KIX32.exe to run the script and review the mappings and

processes that would be performed. When you are satisfied that your configuration

file is working properly, you can continue with the installation process in your AD

environment.

a. If you plan to use the UserDisplay.kix to customize the initial greeting screen,

review the section titled “Customizing the Initial Display Screen” later in this

document. Create/edit the script and include it with your other files.

b. Develop & test the UserProcess.kix script if you plan on using it. Refer to the

section titled “Custom Resource Processing” for more details.

c. If you need custom language support, create one or more LSL_###.LNG files

to define the messages in the language(s) of your choice. See the

“Customizing Language-Specific Messages” section for full details.

6. Copy the files to your domain controller’s SYSVOL\domain\scripts folder, from

where they will be replicated to other domain controllers. You will need the

Kix32.exe, kixtart.kix, your customized login.ini, and – optionally – the login.bat file.

Login.bat is needed only if you support legacy (Win9x) clients. You will also need to

copy the UserDisplay.kix, LSL_###.LNG, and UserProcess.kix files if you use them.

8

7. Using a test account, define the account properties to run the new login script. In most

environments, all you need to do is reference kix32.exe. Note that Kixtart 4.60 has a

bug that requires you to specify the login script name – “kix32.exe kixtart.kix”.

8. To validate the process, login with a normal (not test) account on a test system and

create an empty file – LoginDebug.log – in the test user’s profile folder

(%USERPROFILE%). Log off, and then log back on with the test account. The

presence of the debug file will be detected, and status information will be written to

that file. Verify that the appropriate devices were mapped, message files displayed,

and extra scripts executed. Note that in this debugging mode, resources are mapped,

displayed, and executed as appropriate, and their action is logged to the log file. After

verifying your configuration, you can deploy the login script to the remainder of your

user population. Be sure to remove the LoginDebug.log file from your test system

when you are finished debugging your script configuration.

Note: As of version 2.7.5, you can add the parameter “--D” to the Kix32.exe

command in the user profile to force debug mode on startup, eliminating the need to

log in and create the log file manually.

Note that any time you need to debug your script configuration, you can create the

LoginDebug.log file in your UserProfile folder. The mere presence of that file will cause the

debug information to be written. The file is overwritten each time the script runs to prevent it

from growing uncontrollably. A typical debug file is only 5-7 Kbytes.

You can also enable debugging system-wide by setting a DEBUG=Y parameter in the

COMMON section of your config file. This is not generally recommended as it will enable

debug logging for all users and can affect performance for everyone by creating a debug file

in every user’s profile folder. Since the presence of that file itself enables debugging, turning

this on just once will enable debugging for every user’s logon until the local file is deleted

from every user’s profile folder AND the setting removed from the configuration file! This

setting, therefore, should be used with extreme caution and only in test environments!

Pre-Deployment Considerations

System Policy Settings

We strongly recommend that any logon script be run visibly so the user is aware of any

connection or processing errors, and run synchronously so that all mapped resources are

available before the user begins working. The script runs extremely quickly so synchronous

operation will not cause unacceptable logon delays. Enabling the setting to “Wait for the

network to be ready” is also a recommended practice, especially in large networks or those

with multiple sites.

Login (profile) Vs. Logon (GPO) Scripts

The Universal Login Script is designed to function as a Login script defined in the User

Profile. This script runs in the user context and can properly configure all user settings.

Logon scripts deployed via GPO run in a system context and may not be able to properly

process all user-specific settings. The use of the Login script method applied via User Profile

is strongly recommended to insure the highest compatibility of all features.

9

The Login Configuration File
The configuration file consists of three types of records.

 The first type of record – the common record – defines the overall script configuration

parameters, and is defined in the COMMON section.

 The second type is a Resource record, which defines network resources that can be

connected to, displayed, or executed. There are many resource records, usually one

for each resource configuration to be processed. Realize that there could be multiple

records for one drive letter, or for one share, depending on the authorization

qualifications that you define. There could also be one record for many resources

through the use of Value Rewriting and Lookup capabilities.

 The third type is a Lookup record. This is used by Value Rewriting to translate a user

name, site name, OU string, or network address into some part of the resource value.

You may have as many lookup records as you need. There is also a special Lookup

record called DEFAULTPRINTER, which allows overriding the default printer

selection on a per-computer basis, and another called GROUP_BASED_CONFIG for

selection of configuration files by AD Group membership.

All records are maintained in login.ini, which is a standard INI format file. Each section will

be reviewed in detail in the pages that follow. The records can be defined in any order,

although the COMMON section is usually placed first. The sample configuration file

contains many comments that can remain or be removed. Having comments in the file will

not affect the operational performance.

Locating the Configuration File

The login.ini configuration file is located by determining which folder Kix32 was invoked

from. This provides a simple yet effective method of providing different configuration files

within a single Active Directory domain. For example, there might be three unique divisions

within the Fabricam.com domain – Widgets, Gadgets, and Thingamajigs. Each division has

its own servers, but all of them are all in the same domain. The login configuration can be

simplified considerably by creating a subfolder for each division. The NetLogon share would

have a Widgets, Gadgets, and Thingamajigs folder. Each folder would contain a copy of

Kix32.exe, the login script Kixtart.Kix, and a unique Login.INI file. User profiles would

specify the path to kix32. For example, instead of simply placing “kix32.exe” in the login

script field of the user’s profile, users in the Widgets division would have

“widgets\kix32.exe”, while users in the Gadgets division would have “gadgets\kix32.exe”.

10

Alternate Config-File Selection Methods
The login.ini file is the default configuration file for all users. There are several alternate

methods of choosing a different configuration file to accommodate special situations. The

alternate files are processed in a specific order of increasing preference as listed here.

Selection by Command Line Argument

An alternate configuration file can be specified on the command line with --i name. The

.INI extension is not specified. This method is useful when you want to run site or division-

specific configuration files from a common NetLogon folder.

The use of the command line to specify a config file is equivalent to using a subfolder with

the standard login.ini file, and the decision to use one method or the other is left to the local

administrator. For example, specifying kix32.exe kixtart.kix --i widgets would have

the same effect as using a widgets subfolder in the NetLogon folder and specifying

widgets\kix32.exe kixtart.kix.

Selection by Group Membership

When enabled, a configuration file may be selected based on a user’s membership in a list of

defined AD Groups. This is discussed in detail in the section titled “Group Based Config-File

Selection”.

Selection by Client Computer

A computer-specific configuration file can be defined using the format hostname.ini. When a

user logs into a computer and a corresponding hostname.ini file exists in the NetLogon

folder, that file will be used according to the following rules:

 If the MachineSpecificReplaceMode value in the hostname.ini file is enabled, or the

“--omc” command-line argument is specified, the hostname.ini file will replace any

previously selected configuration file (replace mode).

 If replace mode is not enabled, the hostname.ini file will be processed after the

default configuration file and the contents merged. Any resource defined in the

machine-specific file will override any resource that is also defined in the primary

configuration file.

Computer-specific configuration files are an ideal way to customize resources for special

hosts such as Kiosks and Instructor systems in classrooms. They are also an excellent method

to alter the configuration for application-specific Remote Desktop/Citrix servers.

Selection by User ID

If the login script finds a userid.ini file, it will use that file for the mapping the user’s

resources. This feature should be used only when all other configuration options are

exhausted, as the maintenance of individual configuration files can be overwhelming. It is,

however, an excellent way for one user (you!) to test a new configuration file prior to

deploying it to the user community!

11

The COMMON Configuration Parameter Section
These parameters are contained in the COMMON section of the configuration file. All of

these values are optional, and control general operation of the login script.

 License Key – optional – A string containing the license key, where required.

 HDMessage – optional – A string displayed when errors are encountered, informing

the user how to contact the help desk. This message should be relatively short, and

should include contact info such as a phone number or extension.

 ConnType – optional – A comma-delimited list that defines the permitted connection

types – CON (Console), RDP (Terminal Server), or ICA (Citrix). If this record is

defined, only connection types that match one of the entries in this comma-delimited

list will run the login script. For example, if you do not want users of your Citrix

server to run this login script, specify “CONNTYPE=CON,RDP”, excluding the

Citrix ICA connection class. You can also specify the connection type restriction on a

resource by resource basis. If ConnType values are specified for the common

parameter and the connection type does not match, the script will exit silently without

any messages being displayed. If the string is blank, then no restrictions are enforced.

 ClearDriveMappings – optional – A Boolean value that determines if the script

should clear persistent drive mappings before mapping drives. Specific drives can be

excluded by defining the IgnoreDriveMappings parameter. This parameter (and all

other Boolean parameters) can be defined as “Y” or “N”.

 IgnoreDriveMappings – optional – A string of drive letters that should not be

unmapped when ClearDriveMappings is true. This is useful when a range of drive

letters is permitted for persistent ad-hoc mapping. The drive letters should be

delimited with commas.

 ClearNetShorcuts – optional – A Boolean value that determines if the script should

remove network folder shortcuts from Network Neighborhood.

 IgnoreNetShortcuts – optional – A string of either UNC Paths or Shortcut Names

that should not be removed when ClearNetShortcuts is enabled.

 ClearPrinterMappings – optional – A Boolean value that determines if all printer

mappings should be cleared before mapping printers.

 ForceVisible – optional – A Boolean value that forces the login script to run in a

visible, maximized window. This setting overrides the Group Policy “run login script

minimized” by forcing the console to be a tall, foreground window.

 MinimumDisplayTime – optional – Force the login script window to display for the

defined number of seconds. Useful in very fast environments – especially virtual

systems – where there is insufficient time to view the status information that is

displayed during login. The maximum allowed value is 10 (seconds). Any value

specified that is greater than 10 is forced to 10. This value is measured from when the

script starts running, so if the script takes 11 seconds to complete, no additional delay

will be added. If you desire an additional display time, which might be useful for

12

debugging, you can create a Kix script that sleeps for the additional seconds that you

desire or waits for a keypress, and CALL it via the last COMMAND record.

 FlushTokenCache – optional – A numeric value defining the number of days that

can elapse before the Kix32 token cache is flushed. The cache-flush takes effect on

the next login, since Kix32 is already running this process.

 OUOffset – optional – A value that defines the element in the DN string that

uniquely identifies the unique department or divisional OU. See Path Rewriting for

more information. The value defaults to 1, assuming that a user DN string looks

something like:

 CN=user name,OU=Users,OU=Dept,DC=contosso,DC=com

In this case, the desired OU contains “Dept”, and is the second OU element. Using a

zero base, that element has an ordinal of 1.

 PCOUOffset – optional – Same as OUOffset, but for the workstation name

 LanguageID – optional – Defines the language for user messages and disables

automatic language configuration. If the value is 0 or undefined, the script will

attempt to display messages in the language defined by the user’s Locale setting,

defaulting to English if a language is not available.

See the appendix for a table of Locale values that can be set. Not all Locale languages

are available, but language files can be generated at no charge if a translation is

provided. You can also create your own language file using the UserLang.kix file as a

template for a LSL_###.LNG file. (“###” is the Locale ID.)

Up to ten core languages are built into the script. Additional language files are loaded

dynamically when needed. The messages are displayed in English when a required

language is unavailable. See the readme.txt file for the most current list of supported

languages.

The LanguageID value may also contain Rewrite:Lookup values. Instead of a specific

numeric value, the parameter can be one of the following:

o “&SITE:LanguageTable&” to perform AD-Site-specific language settings

o “&OU:LanguageTable&” for OU-specific language settings

o “&SUBNET:LanguageTable&” for subnet-specific language settings

A Lookup record matching the referenced name (“LanguageTable” in the example

above) must be created with the values to associate the Site, OU, or Subnet to specific

language IDs.

It is recommended to allow dynamic language selection whenever possible by setting

this value to zero (or undefined).

 RunSilent – optional – Suppresses all script output except for MESSAGE records

and error messages. Causes the ForceVisible option to be ignored. Note that if Group

Policy is set to run the login script minimized, any system messages may not be seen

at all if RunSilent is selected. Messages and errors are not suppressed by RunSilent.

13

Note that using GPO to run the script minimized is not recommended as errors will be

displayed but unseen in the minimized window.

 LPHardMap – optional – When true, remaps printers that are already connected.

The default is soft-mapping, which will not remap a printer that is already connected.

 AllowedDomains / DeniedDomains – optional – lists of domains where the login

script is permitted or denied. This is useful where inter-domain trusts exist for

authentication but access to “home domain” resources may be blocked. The login

script will simply abort with an “invalid domain – script terminated” message after

the initial user information is displayed. The MinimimDisplayTime parameter is

honored, insuring that the user can understand why the script terminated. Only one

parameter may be used – either a list of allowed domains or a list of denied domains!

This is not required when you have multiple domains, but may be helpful when

logging into trusted domains.

 NAC Settings – optional – controls the actions of the script when Network Access

Control is active (the netmask is 255.255.255.255).

o NAC_Enable – Boolean – enables NAC awareness.

o NAC_Timeout – Integer – number of seconds to delay during NAC condition.

o NAC_Command – String – command to run after delay

o NAC_Command_Delay – Integer – Seconds to delay before running command.

 UseGroupBasedConfig – optional – A Boolean value that enables the use of

configuration file selection based on Active Directory group membership. When true,

the GROUP_BASED_CONFIG section of the INI file is enumerated to determine if

the user is a member of one of the specified groups. If a membership match is found

and the defined configuration file exists, it is used for all further configuration tasks.

If no group membership match is found or the defined config file does not exist, the

default configuration file is used.

 MachineSpecificReplaceMode – optional – A Boolean value used only in a

machine-specific configuration file to indicate that the contents should replace rather

than be merged with the primary configuration file.

14

The GROUP_BASED_CONFIG Section
This is a lookup section that maps Active Directory group names to config file names, using

the format “AD_GroupName=Config_Filename”. This is used only when the

UseGroupBasedConfig setting is true. Use is discouraged except during migration tasks due

to the extra processing required.

The configuration of this section is discussed in detail in the User Guide section titled

“Group Based Config-File Selection”.

The DEFAULTPRINTER Section
This section is a lookup table, but is not associated with any Value Rewrite parameter. Its

purpose is to allow the centralized management of per-computer printer default settings. In

concept, it works similarly to the DPRINTER environment variable to define a default

printer, but without the need to configure each computer.

Note that this setting cannot be used to define a locally attached printer as the default – the

use of the DPRINTER environment variable is still required for this purpose.

The format of this section is simply <ComputerName>=<PrinterResource>, where the

computer name is the standard NetBIOS computer name and PrinterResource is the full UNC

path to the printer resource.

The general concept for use of this feature is to define one or more printer resources. These

resources can set the Default Eligible status as needed, allowing the printer to become the

default printer for most systems. A small group of computers can then override the default

printer setting by creating an entry in the DEFAULTPRINTER lookup table.

DEFAULTPRINTER is used to set a network printer to default, overriding any default

selection. The DPRINTER variable defined in the computer environment is used to override

the default printer selection with a local printer.

15

Resource Records
Resource Records define all of the parameters associated with a network resource. The

parameters include classification, location, description, and an array of authorization values.

A record might control one or many possible resource targets through Value Rewriting.

There are four basic types (classes) of resource records found in the configuration file. These

include Disk, Print, Message, and Command records. Disk records map to network disk

resources. Print records are used to connect to network printer resources. Message records

are used to display the contents of text files, usually for outage notifications or other network

events. Command records execute other processes, which can install or remove software, or

customize the target computer. Note that commands are executed in the user’s security

context. If a user is not a member of the local Administrators group, many commands and

installations may not be successful. We recommend that the command resources be limited to

processes that customize the user’s workstation environment.

Resource Record Format

All resource records follow a standard format beginning with a Resource Identifier and

followed by two or more parameter/value pairs. CLASS and PATH parameters are always

required. A typical Disk resource record is shown here:

[RESOURCE_ID]

CLASS=DISK

PATH=\\server\share\subfolder

TARGET=S:

DESC=Share identifier string

GROUPS=group1,group2,Group3!

This will map the shared disk resource to the user’s S: drive if the user is a member of

group1 or group2. The user cannot be a member of group3, however. The mapped drive will

be labeled as “Share identifier string”, which will be visible in Windows Explorer.

It is critical that each Resource ID be unique! If duplicate Resource IDs are present in the

config.ini file, any entries after the first will be ignored.

Note that different classes of Resource Records have different number of required

parameters. For example, DISK records require CLASS, PATH, and TARGET parameters,

while PRINT records only require CLASS and PATH parameters.

[RESOURCE_ID]

CLASS=PRINT

PATH=\\server\Printer23

DESC=high speed laser printer

OUS=Corporate HQ

SETDEFAULT=y

This example will map the high speed laser printer to all users in the “Corporate HQ” OU

and set it as the default printer. The DESC parameter is not used by the login script and is

present only for identification purposes.

16

Resource Core Parameters

Resource records consist of the following parameters that define the type and location of the

resource. The content of each value may differ based on the class of resource being defined.

 CLASS – required – This defines the type of resource record.
CLASS=Disk

Values must be one of:

o DISK – defines a shared disk resource.

o PRINT – defines a shared printer resource.

o MESSAGE – defines a message resource file that will be displayed.

o COMMAND – defines a command resource file that will be executed.

 PATH – required – Defines the path to the remote resource. Path Rewriting is

supported for all resource classes. Paths for all resource types may include

environment variables, which are expanded before use.

Message path values have a special feature that auto-locates files within the

NetLogon share. If the path is rooted – beginning with a “\\” or “d:\”, the actual path

is used. If the path is unrooted, the \\%USERDOMAIN%\NetLogon share (and the

startup subfolder, if different) is checked instead. If the file is found there, the path

value is updated to define the location within the NetLogon share. File names can be

prefaced with an unrooted path to define subfolders within the NetLogon share as

shown here.
PATH=folder\filename

o Disk – A UNC path referencing the network disk resource, usually in a

“\\server\share” format, but it can also include additional path values for deep-

mapping as supported on Windows 2000 and higher environments. Multiple

paths can be specified, delimited with semicolons. If one path is not found, the

others are tried before reporting an error, which is useful for D-R scenarios.

This value can also be the literal string “HOME”, which refers to the user’s

home folder as defined in Active Directory. The HOME mapping is ignored

by 32/64-bit systems in AD domains (where it is mapped automatically) but

can be defined so a mapping reference is displayed in the login script console.

If the login script is run outside of the login process (manually after a VPN

connection, for example) the HOME value will be looked up and mapped via

the login script if it is defined in the user’s profile. The HOME parameter is

ignored if not defined in the user’s Active Directory profile.

o Print – The UNC path referencing the network printer resource. Note that the

printer name and share name must be identical for proper printer connections.

o Message – The path to the message text file to display in the login script

console window.

o Command – The path to the command file to run, without any arguments.

The exact path must be specified if the command cannot be located via the

System PATH variable.

17

 TARGET – class-specific – Defines the target identifier that the resource will be

mapped to.
TARGET=G

o Disk – required – The local drive letter, with or without a trailing colon. It can

also be the string “UNC”, which will create a network shortcut in Network

Neighborhood instead of mapping to a drive letter.

o Print – optional – The local LPT# device name (rarely used), used to support

DOS/Legacy applications. LPT1-LPT9 can be defined.

 DESC – optional – Defines a description for this resource. Value Rewriting is

supported with both direct and lookup based rewrites.
DESC=description of resource

o Disk – On Windows XP and higher systems, the mapped share will display

this description in Windows Explorer. As such, it should usually be kept short

- 30 characters is a good maximum length.

o Print – not used, but allowed as a comment.

o Message – A small text header that precedes the actual file content

o Command – If specified, the message “Please wait while <DESC> runs” is

displayed. If DESC is not specified, the entire command path is used in the

“please wait” message. The DESC parameter is recommended to provide a

more meaningful message to the end-users.

 PRIORITY – optional – A numeric value used to decide which resource will be used

when multiple resource records compete for a single target. Numerically higher

values have higher priorities. Without a priority defined, if two or more resources

reference the same target, the last authorized resource will be used.
PRIORITY=2

o Disk – Defines the priority of this resource record. For example, you might

define a network share that will map to “T:” for most users, and define it with

a priority of 1. If a small group of users require a different connection to their

“T:” drive, you could define their resource record with a priority of 2 and their

resource will take precedence when they log in.

o Print – Used in a similar fashion to Disk resources, but applicable only when

an LPT# device name is used as a target.

 ERRORCONTROL – optional – A parameter that controls how errors that occur

while mapping resources are handled. Normally, resource failures are displayed in red

and cause the helpdesk message to be displayed at the end of the script, enabling a

15-minute delay. A value of WARN displays the connection and error in yellow. A

value of IGNORE displays the connection in green with “NOT AVAILABLE”.

Either setting suppresses the helpdesk message and error delay. This is recommended

for use where the &USER& macro is used and the target resource might not be

available for every user.

o Disk & Print – supported.

o Message & Command – not supported as non-existent paths are ignored.

18

Resource Access-Management Parameters

The next group of parameters permit or reject access to the resource. If none of the

parameters are defined, the user will be permitted access. If any of the parameters defined

prevent access to the resource, a connection to the resource will not be made, even if other

parameters allow it, except for the Users parameter. This follows the general concept of

“most restrictive” security. These values are supported by all resource classes. Note that this

controls which resources will be connected or used and does not actually secure the resource.

Resource access can only be restricted by NTFS permissions.

 USERS – optional – A string value containing a list of specific user IDs who are

authorized to access this resource. When the current user ID is matched to one of the

string elements, the resource is permitted and all other authorization checks are

bypassed. This allows per-user mapping to be easily defined.
USERS=jsmith,mjones

 PRIV – optional – A general permission level that controls access to the resource.

The value, either ADMIN or NOGUEST, provides a gross level of access control to

the resource. When set to ADMIN, access is permitted only when the user has admin-

level access (Local or Domain). When set to NOGUEST, access is not permitted to

users with Guest level access. This is useful in a workgroup environment where

network groups are not available or for very small networks where you want to apply

simple restrictions to the shares. This works particularly well with the Message

resource type to display a message that reminds anyone with Admin rights to use

extra care during their login session.
PRIV=Admin

 GROUPS – optional – A comma-delimited list of AD Groups whose members are

permitted access to the resource. If the user is a member of any of the listed groups, a

connection to the resource will be permitted. There are modifiers available to this

parameter that change the group membership association from permitted to

mandatory. If mandatory membership is enabled, the user must be a member of every

specified group. A second modifier performs exclusion, which defines that the user

must NOT be a member of the specified group(s). There are many combinations of

group specifications and modifiers to tailor the access to the resource. These

modifiers are discussed in detail later in this manual.
GROUPS=Administrators,Marketing,Finance

 OUS – optional – A comma-delimited list of OU names. Permits mapping when the

user is a member of any of the specified User OUs. Note that this requires a

consistent OU structure in AD to be effective.
OUS=Sales,Finance

See the section “Group and OU Processing” section for complete information related

to configuring GROUPS and OUS parameters.

 COMPUTEROUS – optional – Similar to the OUS parameter, it permits the

mapping when the user’s PC is a member of any of the specified computer OUs.

Again, a consistent AD structure is recommended to implement this effectively.
COMPUTEROUS=Campus1,Campus2

19

 SITES – optional – A comma-delimited list of Active Directory site names. Members

of a site that appears in the list will be permitted access to the resource.
SITES=New York,Los Angeles

 ADATTR – optional – A list of attribute-name to value-list parameters. This

provides the ability to map a resource by associating AD Attributes with specific sets

of values. See the “AD Attribute Processing” section for full details.
ADATTR=+,Department:Sales;Marketing,L:New York;Chicago

 CONNTYPE – optional – A comma-delimited list that defines the permitted

connection types – CON (Console), RDP (Terminal Server), or ICA (Citrix). The

connection type is determined when the login script starts. If the current connection

type can be matched with the parameters specified in the list, a connection to the

resource will be permitted. If CONNTYPE is undefined, than any method is allowed.

Do not use the global CONNTYPE setting if per-resource controls are desired!
CONNTYPE=ICA

 LAPTOP – optional – A Y/N Boolean setting that, when defined, restricts the

resource to laptop or non-laptop systems. WMI is used to determine if the system

contains an active battery. A “Y” value will restrict the resource to laptop systems,

while an “N” value will restrict the resource to non-laptop systems. The default

(undefined) is to not restrict the resource.
LAPTOP=Y

 LOGIC – optional – A string value containing “OR” which is used to control how

User Group and User OU access controls are resolved. Under normal conditions, a

user must meet the requirements of all qualifiers. In the case where both Group and

OU parameters are defined in a single resource record, the user must be qualified by

both sets of parameters. There are times where this is too restrictive – the share

should be mapped by either OU or Group membership. Setting the LOGIC value to

“OR” will relax the matching requirements, requiring just an OU or Group parameter

match.
LOGIC=or

Note that using an OR Logic parameter with mandatory group membership will fail if

the user is not a member of a specified mandatory group. Defining mandatory groups

and an OU list with OR logic – while technically not an error – would have no

practical value.

 CFGSET – optional – A string value containing an arbitrary name, used to group

specific resource records together. When a resource record contains a CFGSET value,

it is processed only when the command-line parameter --C name is specified and

the name matches the CFGSET name in the record. This allows a single config file to

contain both common and department or region-specific records without having to

use OU or Group controls. Resource records without a CFGSET are always

processed, but only records with CFGSET defined that match the command line

argument will be evaluated.

20

Special Resource Parameters

The following parameters are used only by certain resource classes to modify the connection

actions or preferences. USER_name parameters are not supported by the GUI admin tool.

 USER_name – optional, all classes – User-defined resource record value, used by

the UserProcess.kix script. Multiple name values are permitted. The example below,

based on the example code, targets workstations whose names begin with “ny02b17”.
USER_WKSTN=ny02b17

 MAKELINK – optional, Disk class – A Boolean value that when true, creates a

network shortcut in Network Neighborhood in addition to mapping to a drive letter.

This value is ignored/forced on when TARGET=UNC.

 DELAY – optional, Message class – Used to override the default 2-second delay.

Any positive value can be specified, including zero for no delay at all.
DELAY=5

 COLOR – optional, Message class – Used to define the color of the foreground text

in message displays. Allowed color definitions are Blue, Green, Cyan, Red, Magenta,

Yellow, and White. Only the bright colors are supported. If the color specified is

invalid, or is not specified, White will be used. The background color cannot be set.
Color=Cyan

 PROMPT – optional, Message class – Displays a prompt in a pop-up window and

allows a Yes/No action to be taken. Prompt is processed after the message file is

displayed, allowing a fairly large amount of text to be displayed during the logon

process. After the message is displayed, if Prompt is defined, the message is

displayed in a System Modal dialog box (blocks all other processing) and waits for a

button to be clicked before proceeding. The Delay value is ignored if Prompt is

defined. The Prompt parameter takes 5 parts, delimited with semicolons.

PROMPT=type;title;message text;YES_action;NO_action

o Type 0 (zero) for an “OK” button or 1 (one) for Yes/No buttons.

o Title A title for the dialog box – 64 chars max recommended

o MessageText The text to be displayed in the dialog box. Up to 1024

characters are allowed, all on one line. Line breaks can be

defined by the sequence “\n” anywhere in the text.

o YES_Action The action to take if the Yes button is clicked

o No_Action The action to take if the No button is clicked.

Actions are supported only for Yes/No type of prompts. No action is available for the

simple OK dialog box. If no action is defined, none is taken and processing continues.

The only action currently supported is “LOGOFF”, which will forcibly end the user’s

login session. This allows an “Acceptable Use” message to be displayed. If the user

accepts the policy (responds “Yes”), the login continues. If they respond “No”, the

login terminates.

21

 ARGS – optional, Command class – Any arguments required by the defined

command. Environment variables may be referenced in the argument string. Value

Rewriting may be used with the ARGS parameter, with one caveat. When Value

Rewriting cannot find a matching lookup value, the entire parameter value is cleared

(since a value without its lookup component is likely invalid). This means that ALL

arguments will be cleared if a lookup cannot be resolved. To prevent errors, the logic

employed will then clear the COMMAND entirely if a Value Rewrite lookup

parameter cannot be resolved.
ARGS=script.kix --r

 METHOD – optional, Command class – Defines the method of execution from

within KiXtart.
METHOD=Run

o Call – calls another KiXtart script in the current script context (variables are

preserved in the new KiX script!)

o Run – runs an external process, the KiXtart login script does not wait for the

specified command to complete.

o Shell – runs an external process, the KiXtart login script waits for the

specified command to complete. This is the Default Method!

 RUNONCE – optional, Command class – Causes a command to be run only one

time, per user, per computer when set to true. The Resource Name is used as an

identifier. This identifier is used to create a key in the HKCU registry path with the

current date to indicate that the command has been performed. If the value exists and

contains data, the command will not be run on future logins. The date is not checked.

 SETDEFAULT – optional, Printer class - Defines the resource as the default printer.

The printer name and share name must be the same for this option to work. This value

supports the following parameters:

o Y The printer will be marked “Default Eligible”

o N (or undefined) The printer will not become “Default Eligible”

o Soft The printer will become “Default Eligible” if a default printer

is not already defined

o ByGroup:list The printer will become “Default Eligible” if the user is a

member of a group defined in the list.

o ByOU:list The printer will become “Default Eligible” if the user is a

member of an OU defined in the list.

o ByCOU:list The printer will become “Default Eligible” if the computer is a

member of an OU defined in the list.

o ByCGroup:list The printer will become “Default Eligible” if the computer is a

member of a group defined in the list.

In all cases, “list” is a comma-delimited list of AD objects. Unlike the OUS,

COMPUTEROUS, or GROUPS parameters, the “+” and “!” qualifiers are not

22

permitted and, if used, will cause the match to fail.
SETDEFAULT=ByOU:Brooklyn Users,Westchester Users

Network Shortcut vs Drive Mapping

In addition to traditional drive mapping, where a remote resource is mapped to a local drive

letter, the script can pre-populate the Network Neighborhood with shortcuts to remote

resources.

One of the key advantages to this is that there are no disk drive letter limitations – any

number of shortcuts can be processed. Mapped drive letters can be augmented with shortcuts

for sites desiring to migrate away from mapped drives by enabling the MAKELINK

parameter in each drive resource record. Note that because the drive letter and path for a

HOME reference is controlled by Active Directory, the MAKELINK parameter is ignored if

the PATH=HOME.

The image below illustrates the mapped drives and network shortcuts in the Network

Locations section of Explorer.

23

Group and OU Processing
Using Active Directory Groups and OUs to perform resource processing can provide a high

degree of configuration flexibility. All four classes of resource records support Group and

OU processing. There are four forms of processing, as described below. The following

examples show group based mapping, but apply the same way to OU based mapping. Group

and OU processing can be used separately or together, permitting complex configurations to

be achieved. In addition, Computer OU membership can be used independent of User Group

& OU matching.

1. The simplest form – Allowed Groups or OUs

The form GROUP=group1,group2,group3… or OUS=ou1,ou2… will cause the

resource record to be permitted if the current user is a member of at least one of the

listed groups or OU names. The resource record will be ignored if the user is not a

member of any group or OU listed. Note that an “OU” is a simple name, such as

“Chicago”, which might be part of the DN OU=users,OU=Chicago,OU=America,

DC=contoso,DC=com. The OU name is qualified internally be prefixing it with

“OU=” and adding a comma suffix.

2. Mandatory Groups

A modifier can be used to require membership in two or more groups.

The form GROUP=+,group1,group2 would require that the current user be a member

of both groups. The leading “+” is used to indicate mandatory membership in all

listed groups, and can be used alone or as the leading character of any group name.

The “+” modifier has no value if only one group name is defined. A special form of

Mandatory Groups combines Mandatory and Allowed forms. The form

GROUP=+,group1,(group2;group3) defines a mandatory group and a mandatory

list – the resource is mapped if the user is a member of group1 AND any of the

groups in the list in parenthesis. Note that the sub-group is delimited with semicolons.

Since a user can only be a member of one OU, this attribute does not apply to OU

processing.

3. Membership Negation (Exclusion)

A “!” modifier can be used to indicate negation. If a “!” is placed in front of the

argument name, the resource would be processed if the user was not a member of the

named group or OU. For example, GROUP=!group1 would process the resource for

everyone except members of group1, while GROUP=+,group1,!group2

would process the resource for anyone who was a member of group1 but NOT a

member of group2. Note that for OU processing, being a member of an OU that is

excluded will result in access to the resource being denied.

4. Action Negation (Reversal)

If a “!” modifier is placed at the end of the argument name, it reverses the action of

the resource. For example: GROUP=group1!,group2

would prevent the resource from being processed if the user was a member of group1,

even if they were a member of group2. Action Negation is most useful when used

without the Mandatory flag.

24

Active Directory Attribute Processing
Active Directory Attribute processing provides an effective way to authorize resources based

on standard AD Attributes, such as Department, City, or even Title. The ADATTR parameter

can be used with all four classes of resource record.

The general format of this parameter is

ADATTR=ATTR_NAME:Value_List[,ATTR_NAME:Value_List]

ATTR_NAME is any standard AD/LDAP attribute – see the section "Common AD

Attributes" for a list of the most common attribute names. The value of this parameter is

extracted from the user’s AD object and compared to the Value_List string.

VALUE_LIST is a semicolon-delimited list of values that are allowed. If the value of the

attribute associated with the current user is found in the Value_List string, the resource is

permitted.

Multiple Name:Value_List sets can be defined, separated with commas. The ADATTR

parameter accepts the same modifiers as the Group parameter to allow mandatory association

with all Name:Value_List sets, Membership Negation, and Action Negation. Note that there

is one distinct difference between Group modifiers and AD Attribute modifiers – each

Name:Value_List set can accept a modifier, just like a group parameter. The Value_List is

always a “match any”, since a user has only one value associated with an attribute. That is,

the form:

ADATTR=+,Department:Sales;Marketing,L:NYC,Chicago

invokes a “mandatory” flag requiring both a Department and City (L) match, but Department

can be either Sales or Marketing, and City can be either NYC or Chicago.

Combined Logic of Group, OU, and AD Attribute Parameters

The greatest power of Group, OU, and Attribute Processing comes when you combine the

logic. You can process a resource when a user is a member of one group AND expressly not

a member of another group (GROUP=+,group1,!group2). Many complex variations are

possible. The sample configuration file shows how most users map a data share to G:, but

certain users map another share to G: and the data share to F: using group-based processing.

You can extend this by specifying more than one set of parameters. For example, a resource

can be available only when a user is a member of a specific group and a particular OU, or is

in an OU and has a specific title.

The default logic when more than one of the Group, OU, and Attribute parameters are

specified is “AND”, requiring that all of the parameters to be validated. Setting the Logic

parameter to “OR” will allow the resource to be processed if any of the Group, OU, or

Attribute parameter requirements have been satisfied. If any of the Group, OU, or AD

Attribute parameters are not specified, they do not play a part on the authorization logic.

Thus, Groups, OUs, and AD Attributes can be used singly or in any combination to achieve

the desired result.

25

Connection Processing – CAUTION!
Each resource record has several parameters that control the processing and ultimate

authorization of the resource for mapping. These include PRIV, GROUPS, OUS, ATATTR,

SITES, and CONNTYPE. All of these are optional, but if any are specified, the conditions

must be met. Multiple parameters can be defined, in which case, all conditions must be met.

It’s possible, therefore, to specify that a resource requires Admin privilege, membership in a

specific group or groups, membership in a specific OU, and only when logging into a Citrix

connection. Clearly, care must be exercised when specifying more than one parameter set!

When things don’t work as expected – simplify! It’s best to approach defining resource

record access properties in a minimalistic fashion. Use just an OU list, or a group list when

possible. While there are enough options to work out nearly any access scenario, there are

enough options to get you into trouble, too.

Note that the default method to process a record containing both Group and OU definitions is

to permit access only if a user is a member of the defined group(s) and a member of one of

the defined OU(s). The optional parameter LOGIC=OR can modify this method. In the case

of LOGIC=OR, the user can be a member of one of the defined OUs or one of the defined

groups. This can reduce the number of resource records for shares that must be mapped based

on either OU or Group membership. The use of mandatory groups should be avoided when

employing OR based logic.

When you employ Computer OU matching, the logic is independent of User group or OU

matching. That is, it is equivalent to specifying a Site, Priv, or other qualifier. If you specify a

Computer OU and no match is found, the resource is not mapped, regardless of whether User

OU or Group matching would allow a connection.

Carefully consider the use of mandatory, negation, and inversion operators, and how they

interact with the LOGIC setting. Most important is the understanding of the exclusion

operator (!object).

 When evaluating groups, the Mandatory flag decides if exclusion denies access to the

resource or not. If Mandatory is not set, and the user is a member of an excluded

group, the script will ignore the setting and continue looking for other group matches.

If none are found, the resource will be skipped, but if a match is found in another

group in the list, the resource will be mapped. When Mandatory is set, membership in

an excluded group will immediately deny access to the resource.

 When evaluating User or Computer OUs, the Mandatory flag has no effect, since an

object may not be a member of multiple OUs. Special processing is done when

multiple OUs are listed with exclusions which has the effect of the Mandatory flag

being set. That is – if the object is a member of any excluded OU, the access is denied

and additional processing is not performed.

Basically, if you use excluded groups, processing is relaxed unless you use the Mandatory

flag. If you use excluded OUs, the processing is strictly enforced.

26

Value Rewriting & Lookup Records
Value Rewriting is a powerful capability that allows the administrator to dynamically adjust

the content of a resource parameter based on a user, group, AD-Site, OU, or even network

subnet. Two common uses for this are mapping each department’s share to the same drive

letter, and mapping printers based on subnet or group. Value Rewriting technology is

available to PATH, DESC, ARGS, and LANGUAGEID parameters.

Lookup records are used by the Value Rewriting feature. When the parameter contains a

special Value Rewrite Lookup token, the value is changed to reflect the values in the

corresponding lookup record.

For example, the PATH value defined by the resource records usually references a specific

location within the network. There are times, however, when a resource needs to be tailored

to a specific user, AD Site, User OU, Computer OU, or Network Subnet. Value Rewriting

provides several different methods for altering the resource path.

Path Rewrites are triggered by a token in the parameter value with the format

 &TYPE[:lookup]&

“TYPE” represents one of the rewrite types listed below, and “[:lookup]” is an optional

parameter that defines the lookup table to use. Most rewrite types allow both Direct and

Lookup substitutions, the exception is Subnet, which only allows Lookup substitutions.

Direct substitutions are basic rewrites that simply replace the macro text with the name

associated with the TYPE. Lookups are table-based substitutions that replace the macro with

the value determined by a lookup table.

Lookup-based rewrites are the most powerful method, and an example might best illustrate

the capability. This example of USER based lookup rewrites uses the UserID to locate a

value in the lookup table.

There are times that JSmith and her team need access to one subfolder of a share, and other

users need access to different subfolders. Even though they are a team, there might not be a

related AD group that can be used for association with a share. User ID Rewriting combined

with lookup records provides this powerful functionality.

A User ID Rewrite record looks like this:
PATH=\\server\share\&USER:MAP03&

A lookup record, placed anywhere in the configuration file, might contain the following

value definitions:

[MAP03]

JSmith=project_X

PWhite=project_X

MBlack=project_X

TGreen=project_X

Now, when any of those users log in, they will receive a connection to the share

“\\server\share\project_X”. If an ID Mapping does not exist, the connection to the share is not

made. Thus, only the four people listed will connect to that share.

27

Note that the name defined in the &USER:xxx& must match the name of the lookup table –

in the example above, the User lookup table name is “MAP03”. Any name can be used so

long as it is unique.

Value Rewrite Types

1. User ID Substitution

Token syntax: &USER&

This method allows the user ID of the person logging in to be placed into the resource

path. A lookup record is not used.

If PATH=\\server\share\&USER& is defined in the configuration file, and JSmith logs

in, the path that will be mapped will be “\\server\share\jsmith”.

2. User ID Lookup

Token syntax: &USER:table_name&

The user’s login ID is used as a lookup value in the defined lookup table. If a value is

found, it replaces the entire token. If a value is not found, no connection is made to

the resource.

3. Site ID Substitution

Token syntax: &SITE&

This form causes the Active Directory Site name to be substituted for the token. A

lookup record is not used.

4. Site ID Lookup

Token syntax: &SITE:table_name&

This form causes the current Active Directory Site name to be used as a lookup value

into the named lookup table. If a value is found, it replaces the entire token. If a value

is not found, no connection is made to the resource.

5. User OU Substitution

Token syntax: &OU&

This form causes the user’s OU name to replace the token in the string. A lookup

record is not used.

6. User OU Lookup

Token syntax: &OU:table_name&

This form causes the user’s OU to be used as a lookup value into the named lookup

table. If a value is found, it replaces the entire token. If a value is not found, no

connection is made to the resource.

7. Computer OU Substitution

Token syntax: &COU&

This form causes the local computer’s OU name to replace the token in the string. A

lookup record is not used.

28

8. Computer OU Lookup

Token syntax: &COU:table_name&

This form causes the user’s OU to be used as a lookup value into the named lookup

table. If a value is found, it replaces the entire token. If a value is not found, no

connection is made to the resource.

9. Computer Name Substitution

Token syntax: &HOST&

This form causes the computer’s name to replace the token in the string. A lookup

table is not used.

10. Computer Name Lookup

Token syntax: &HOST:table_name&

This form will cause the computer’s name to be used as a lookup value into the

named lookup table. If a value is found, it replaces the entire token. If a value is not

found, no connection is made to the resource.

11. Active Directory Attribute Substitution

Token Syntax: &AD:attribute_name&

This form queries AD for the attribute_name value that is associated with the current

user. If a value is found, it replaces the entire token. If a value is not found, no

connection is made to the resource. For example, if the user is located in Santa Fe, the

token syntax of “&AD:L&” will use the attribute “L” (location) to obtain the city

name, replacing the token with “Santa Fe”. If the AD Attribute is not defined for the

current user, the resource will be ignored.

12. Active Directory Attribute Lookup

Token Syntax: &AD:attribute_name:table_name&

This form queries AD for the attribute_name value that is associated with the current

user. If a value is found, the defined table_name will be searched for a match. If a

match is found, the value returned from the table will replace the entire token string.

If the AD attribute is null or not located in the lookup table, the resource is ignored.

13. Network Subnet Lookup

Token syntax: &SUBNET:table_name&

This form will cause the local computer’s IP address to be logically ANDed with the

corresponding subnet mask. The resulting Network Address will be used as a lookup

value into the named lookup record. Direct substitutions are not available for subnet

based rewrites. All locally defined IP addresses are evaluated. If an exact network

match is not found, a default resource can be defined via “0.0.0.0=text”. If this default

parameter is not specified, the resource is ignored.

29

Lookup Value Recursion
Value rewrites are processed recursively, allowing one lookup to reference another lookup.

Up to ten passes are performed, although more than ten replacements are possible due to how

the replacements are processed.

Each parameter that supports Value Rewriting is passed through the MVLookup function.

This makes one pass, checking for each of the thirteen replacement values in the sequence

described above. Thus, if an OU:map lookup replaces the value with a SUBNET:map

lookup, the subnet lookup will be processed in the same pass, as it comes later in the

sequence. If that subnet lookup replaces the string with a USER:map lookup, a seconds pass

through the MVLookup function will be performed. This will be repeated until 10 passes

through MVLookup are performed, or no more lookup values are detected in the string. If

lookup values still exist after 10 passes, the resource is ignored.

The need for recursive Value Rewriting is rare, but supported for large, complex

environments. Due to the complexity of creating nested Value Rewrite tables, extensive

testing is strongly recommended.

When multiple replacements are made to a value, the debug log will show each individual

replacement. For example, an OU to Subnet to User nested lookup will be shown in the log

as:

Processing TEST

 OK to process this resource!

 MVLookup: &OU:test1&\Share

 MVLookup: &SUBNET:TEST2&\Share

 MVLookup: &USER:test3&\Share

 Translated: \\personalFS\Share

 Translated: ByOUbySubnetByUser

Note that “MVLookup” is reported 3 times, followed by the “Translated” data that ultimately

resulted from the 3 replacements. The second “Translated” data is the DESC value. Since it

has no MVLookup values before it, no translations were performed on this data.

Special Consideration for OU-Based Rewriting

When specifying an OU, you must define the OUOffset value in the login.ini file. This

specifies which OU field in the DN string should be used. For example, if a User’s OU string

returns “OU=Users,OU=Support,OU=IT,DC=domain,DC=dom”, the user’s OU will be

regarded as “Support”, with an offset of 1. This is a fairly common configuration.

 If the structure places the Users at a higher level, such as “OU=Support,OU=IT,

OU=Users,DC=domain,DC=dom”, the OU name is still “Support”, but the index is now 0

(zero) because the most specific OU is in the first position.

Most OU structures will use an offset of either 0 or 1. If one value doesn’t work the way you

expect, try the alternate. By viewing a standard DN string, ignore the CN field, and count the

OU fields (starting with 0) until you find the offset of the OU component you want to use.

The offset value is used only by the Value Rewrite functions because the primary OU that the

user is a member of must be determined. When using OUs to determine if a resource should

be connected, the OUOffset is not used. Each OU defined in the list is checked against the

30

user’s entire DN string to find a match. Thus, if a resource record contained an “OUS=Users”

directive, the resource would likely map for every user, since nearly every user has an

“OU=Users” component in their DN string!

Using User or Computer OU for authorization and rewriting assumes a well-defined AD

structure with all User or Computer objects under a common root and a consistent path depth.

Note that the User and Computer DN strings are written to the LoginDebug.log file for your

reference in choosing an OU Offset value.

Rewriting for DESC values

The same rules for Path Rewriting apply to Description values, including lookups. This is

useful when customizing the mapped drive description. For example, if you use OU based

Path Rewriting to lookup a department’s share, you could set the description to use a simple

OU rewrite so the department name is in the description.

[Sample Dept Share]

CLASS=DISK

TARGET=G:

PATH=&OU:DEPT&

DESC=&OU& Share

[DEPT]

IT=\\fileserver1\ITshare

HR=\\fileserver2\HRshare

Compound Rewrites

Compound rewrites can be used. For example, you might want to lookup a share name by

OU and then specify the subfolder of that share by userid:

PATH=&OU:DEPT&\&USER&$

Compound Rewrites can also be done through the lookup value itself. For example, in the

config file we use for testing, we find:

TEST OF NESTED LOOKUPS - USE WITH CARE!!

The OU lookup returns a SUBNET lookup, which returns a USER lookup

the nesting can end at any time by returning a server name

(see the Region6 and 10.32.80.0 lookup values)

[TEST18]

CLASS=DISK

TARGET=T:

PATH=&OU:test18a&\share

DESC=Map by OU, then Subnet, then User lookups

[TEST18a]

Corporate=&SUBNET:test18b&

Region6=\\fileserver

[TEST18b]

10.32.80.0=\\servefiles

172.16.12.0=&USER:test18c&

[TEST18c]

George=\\fileserver1\Accounting

Mary=\\fileserver1\IT

Of course, you should use valid name, subnet, and OU values for testing.

31

Special Consideration for Subnet Rewriting

When using Subnet Rewriting, you must carefully identify the network address. For example,

if a computer’s address is 172.16.1.48 and the subnet mask is 255.255.254.0, the network

address is 172.16.0.0. Thus, a lookup record for this network might look something like

172.16.0.0=\\server0\share.

0.0.0.0=\\server\share can be used as a default replacement value, as this will match with any

network that does not have a more specific peer.

Note that you cannot specify subnets or supernets, as the network address is calculated based

on the local computer’s address and netmask. If multiple subnets need access to the same

share, you will need to create multiple lookup records, one for each physical subnet.

32

Custom Resource Processing
There are certain situations where even the versatility of the standard script cannot meet all

of the specific requirements to control resource access. User-defined processing is a method

that allows the administrator to write their own code and have it executed by the login script.

Two sample scripts have been provided that perform similar workstation name matching.

One is very basic and the other is a bit more complex.

Resource Processing Concepts

The login script reads each resource record and utilizes the following sequence to decide if

access to a resource should be granted. As soon as a deny access condition is met, no further

checks are performed and the next resource record is evaluated. The process repeats until all

resource records have been examined. The process for evaluating a single resource is:

1. Assume that access is permitted.

2. If USERS is defined and matched, permit the resource and ignore remaining tests.

3. If CFGSET is defined and does not match the parameter, ignore the resource.

4. If PRIV is defined and not met, ignore the resource.

5. If CONNTYPE is defined and not met, ignore the resource.

6. If LAPTOP is defined and condition is not met, ignore the resource.

7. If SITES is defined, check site membership and ignore the resource if not a site

member.

8. If COMPUTEROUs is defined, perform Computer OU matching. ignore the resource

if no match is found.

9. If GROUPS is defined, evaluate membership. Set GROUP allow-access-flag if

requirements are met; continue processing.

10. If OUs is defined, check membership, Set OU allow-access-flag if user is a member;

continue processing.

11. If AD Attributes parameter is defined, check for a match, Set ADA allow-access-flag

if a match is made; continue processing.

12. Evaluate LOGIC value

a. If LOGIC is “AND” or undefined and any of the GROUPS, OUS, or ADA

allow-access-flags are not set, ignore the resource.

b. If LOGIC is “OR” and none of the GROUPS, OUS, or ADA allow-access-

flags are set, ignore the resource.

Note that checks 9 through 11 do not actually set a Deny until step 12. At this point, if no

means to deny access to the resource has been determined, the resource can be processed.

13. Perform optional User-Defined process

a. If the $USERPROCESSACTIVE value is true, call the UserProcess()

function, passing resource record ID and Class values.

b. The user defined function runs, returning 0 if resource is permitted or 1 if it is

denied.

33

14. If resource access is allowed, add the resource to the allowed list and continue

processing additional records.

Configuring User-Defined Resource Processing

There are three requirements to implement user-defined processing:

1. The Kixtart script UserProcess.Kix must be present in the login script folder where

Kix32 and the kixtart.kix script reside.

2. The script must set a global variable “$USERPROCESSACTIVE” to a non-zero

value (ie: 1). The variable must be set as soon as the script is called and not by the

function so that it can indicate that user-defined processing should be used.

3. The script must contain a function called UserProcess, which must accept two

arguments – the name of the resource record and the resource class value. It must

return a value of 0 ($UserProcess=0 and not “Exit 0”) if access to the resource is

permitted or a value of 1 if access is denied.

A sample UserProcess.kix script is provided which illustrates several key methods,

including:

 Properly defining the USERPROCESSACTIVE variable value.

 Accessing the current resource record values.

 Use of USER_name values in the resource record.

 Comparing part of the workstation name to the user-defined value.

 Returning values to allow or deny access.

The actual code implemented by the user can be as simple or complex as required, so long as

the three key requirements are met. While a single method is shown in the example script,

multiple methods can be implemented by using a USER_ACTION value. This can then

define which block of code or functions should be executed on a record by record basis.

The UserProcess.kix script may contain additional user-defined functions to support the

requirements. Care should be exercised to avoid duplicate function and global variable

names! Review the readme.txt file for a list of function and global variable names. Of course,

the user is free to call any internal function they may find useful, and read any global

variable. Changing global variables may cause unpredictable results and should be avoided.

The login script contains many public functions that could be useful in your custom logic.

Using the UserProcess.Kix File
User-defined processing is performed after all standard processing has been completed. To

rely only on user-defined controls, no other qualifiers should be defined in the resource

record.

The record name and type are passed to the UserProcess function. This allows the function to

quickly determine the resource type (disk, print, command, or message) and read additional

parameter values from the resource record. Any number of additional parameters may be

defined, although each should begin with "USER_" to avoid any current or future conflicts.

34

The best way to understand user-defined processing is by a simple example. In this example,

the first 8 characters of the computer name are examined. These are compared to a list that is

read from the resource record. The example record is shown here:

[Lab207InstructorDisk]

CLASS=DISK

TARGET=I:

PATH=\\server\sharename

DESC=Instructor - Lab 207

USER_HOSTQUALIFIER=COEH207I

The "HostQualifier" format is SSBBRRRT##, where SS represents the site (Covington

campus), BB the building (Edwards Hall), RRR the room (107), and T the type (I for

instructor, S for student). The example script checks the first 8 characters of the local

workstation name against the HOSTQUALIFIER list. Any computer NOT beginning with

those 8 characters would be denied access. Since only the instructor's PC would have the "I"

in position 8, a resource could be mapped only for that PC in that specific room. In a larger

classroom, there might be several instructor PCs, so any/all would map the resource.

If classrooms 206 and 207 both needed the same resources on the instructor machines, the

HostQualifier string would contain "COEH206I,COEH207I", and either would then match

the first 8 characters of the workstation name.

The example is fairly simple, but any level or complexity of logic may be employed. The

general concept is to determine if the user or computer should be denied access to the

resource. If so, simply return a True value.

Customizing Language-Specific Messages
Language files allow the messages to be customized on a user by user basis. Up to 190

distinct languages can be supported, based on standard language locale values. English,

German, Spanish, Polish, Dutch, and Swedish languages are currently built-in to the core

script using the standard message format.

To define a new language, copy the supplied _UserLang.kix sample file to a new filename

using the format LSL_####.LNG. Be sure to replace the “####” with the language locale ID.

Locale IDs are listed in Appendix 1 for your reference. Edit the file, replacing the sample

English messages with the appropriate language-specific text. Be sure to retain the macros

(&1&) in the message strings, as these are replaced with data from the PC, user environment,

or network environment. Pay close attention to the structure of the variable definitions,

quoting the strings with single quotes and placing the macros in the correct location within

each string.

Despite having a .LNG file extension, these are indeed Kixtart scripts, and can be tokenized

to prevent anyone from modifying them without authorization. In fact, tokenizing the file

after testing is complete is highly recommended. Be sure to tokenize the file with the same

version of Kix32 that you will run the script with.

The language files should be placed into the same shared folder as the rest of the login script

files. If a language file cannot be located when needed, English messages will be displayed.

35

Sample .LNG Message File

The comments at the top of the script below illustrate the intended message and the values

that will replace the macro tags in the actual message strings. When you modify the message

file, be sure to edit the $MSGTXT variables and not just the comments!

Pay particular attention to the use of apostrophes and other grammatical marks when

creating a new language file!

; 'Kixtart v' @KIX ' login script processor version ' $VERSION

; ' running ' $INIFILE '.'

; 'Logon accepted for ' @FULLNAME ', validated by '@LSERVER

; ' with ' @PRIV ' access rights in the ' @DOMAIN ' domain.'

; 'OS Type: ' @PRODUCTTYPE ' / Version ' @DOS

;

$MSGTXT[0] = 'Kixtart v&1&, login script version &2&'

$MSGTXT[1] = ' running &1&.'

$MSGTXT[2] = 'Logon accepted for &1&, validated by &2&'

$MSGTXT[3] = ' with &1& access rights in the &2& domain.'

$MSGTXT[4] = 'OS Type: &1& / Version &2&'

;

; Drive, Printer, and Command messages

$MSGTXT[5] = 'Clearing prior drive mappings.'

$MSGTXT[6] = 'Clearing prior printer mappings.'

$MSGTXT[7] = ' - Done!'

$MSGTXT[8] = 'Connecting network drives: '

$MSGTXT[9] = 'Connecting network printers: '

$MSGTXT[10] = ' - Default!'

$MSGTXT[11] = 'Please wait while &1& runs...'

$MSGTXT[12] = 'Errors encountered during login processing!'

$MSGTXT[13] = 'Invalid domain, script terminated.'
$MSGTXT[14] = 'Waiting &1& seconds for NAC to grant access.'

$MSGTXT[15] = 'Timeout while waiting for NAC to grant access, script terminated.'

The $MSGTXT global array is declared to hold 30 elements (0-29). Elements 5-15 are used

by different parts of the script and their purpose and format should not be changed. If you

will be using the UserDisplay.kix script to customize the login message screen, you can

redefine the messages held in elements 0-4 and freely use elements 20-29 for your own

purposes. Elements 16-19 are reserved for future use.

36

The Standard Display Screen
The default login screen will look something like this:

There are several important

pieces of information displayed

here. On the second line, we see

the version of Kixtart (4.63)

used to run the login process,

along with the version of the

login script (2.8.7). The “_ts”

on the end of the script version

indicates that timestamps are

enabled and performance

metrics are being written to the

LoginPerf.log file. The path to

the config file used is then

displayed. This will point to the

locally cached copy of the

config file.

A standard set of identification

text is displayed next. The

user’s full name is displayed, along with the domain controller that authenticated the user,

their access rights, and the domain they logged in to. Operating system version information is

displayed on the next line.

If the option to clear drive mappings is enabled, the drive connections that were removed will

be listed. Network Shortcuts will be removed silently if this feature is enabled. The drive

mappings are then displayed, with drive letter and mapped path. Network shortcuts are

created silently when defined to duplicate a drive mapping. Standalone Network Shortcuts

are listed on the status screen with “UNC” instead of a drive letter. The HOME mapping (H:)

normally will not show the path when it is mapped during the login process. If drive mapping

fails, the resource is displayed in red with an error message. Network printers are then

mapped and the default printer identified.

Any messages that are configured are then displayed with a band of “#” characters at the start

and end, and a band of “=” characters in between each message. Finally, any commands

defined will be run. You may see the “Please wait…” message along with the output of any

command sent to the screen.

Customizing the Initial Display Screen
The login script can be configured to display as much or as little general information as

possible. While most users tend to ignore this (they usually know who they are!), the

information is very useful to the help desk and technical staff.

When the login script first starts, it displays some information about the Kixtart executable

and script versions, INI file location, User and privilege info, Domain name, and O/S info.

This information is fairly basic. Before displaying this information, the screen is cleared and

37

text color set to bright white on a black background. The result of the resource connections

are displayed in green if they are successful, and red if errors occur.

The display can be easily customized by placing a UserDisplay.Kix script in the same folder

as the login script files. If this file is present, it will be used instead of the default messages.

A sample file is included in the login script package (which is identical in content and format

except for the color, so you can tell that the external script is being used). Note that if a

custom message script is used, you are responsible for the coding necessary to display any

alternate languages – the built-in language support will not work.

The script should be limited to output statements that display informational messages in

specific colors. The use of complex code at this point is discouraged as it may interfere with

or be affected by script initialization. Use of the AT command to position the cursor is also

discouraged, as further messages indicating the status of mapped drives and printers, as well

as the output of message files and possibly even commands will follow.

Acceptable commands include:

 Color

 All Kixtart macros (Be aware that NoMacrosInStrings is active!)

 Output strings and the newline command (?) or macro (@CRLF)

 Defined variables – see the readme.txt file for a list of variables of interest. (Note that

NoVarsInStrings is active!)

 ReadProfileString($INIFILE, ‘CUSTOM’, valuename)

You can add values to the CUSTOM section of the LOGIN.INI file, and this will

output them to the screen. If you read the parameter into a variable, you must declare

your variable before it is used. (Explicit is active – declare your variables!)

 MessageBox()

This might be a good place to place an acceptable-use message and require

acceptance by the user before logging in. Be sure to use a timeout, or avoid using this

login script feature with any account running automated tasks.

 Beep

 GetDiskSpace – to generate a warning about low disk space on the local drive(s).

Note that the use of other commands at this point could affect the operation of the login

script. If you have any login issues after implementing this script, we strongly recommend

that you rename this file and use the default messages to determine if the display script is

causing the problem.

38

Performance Logging

The performance logging capability of the login script can be leveraged within your

UserProcess function. The TimeStamp(ID) function writes a time-stamped entry to the log

with the “ID” string that was provided as an argument. A call should be made upon entry to

your function and upon start of any key process, and again upon exit. This can help narrow

down any performance bottlenecks. Remember that performance logging is only active when

the LSPERF.TXT file is present in the startup folder. Note that the resolution of the time is

+/- 8ms (0.008 seconds). Refer to the Performance Analysis section of this manual for more

information on enabling performance logging.

39

Debugging
Two levels of debugging are provided to assist in development of your configuration or

diagnosing user login problems.

Level 1 Debugging
With level 1 debugging enabled, the login script runs normally, but writes diagnostic

information to %USERPROFILE%\LoginDebug.log. This level of debugging is actually

enabled simply by creating the %USERPROFILE%\LoginDebug.log file on the target

system. The data in this log is overwritten each time a user logs in to prevent the file from

growing continuously.

Note the OU String, OU Offset, and User OU values, which can be used to verify that the

OU based Path Rewriting is configured properly.

A diagnostic log generated from the sample login.ini is shown below (some data obscured):

Updating cache...

UserProcess.kix has been loaded and is active.

NAC Checking is ENABLED.

===

2014/10/11 - 11:54:18

 Kixtart: 4.63

 Version: 2.8.7_ts

 INI File: C:\Users\GBARNA~1.ITC\AppData\Local\Temp\login.ini (updated)

 User: Barnas, Glenn A. / gbarnas

Locale / Language: 1033 / English (United States)

 LoginServer: \\IHWIADCP01

 Domain: ITCG

 User OU DN: OU=Employees,OU=User Accounts -

Regular,OU=Users,OU=Headquarters,DC=itcg,DC=pvt

 User OU Offset: 1

 User OU: User Accounts - Regular

 Wkstn OU Offset: 0

 Wkstn OU DN:

OU=Desktop,OU=Workstations,OU=Computers,OU=Headquarters,DC=itcg,DC=pvt

 Wkstn OU: Desktop

 Logon Mode: 0

 Laptop: 0

 Detected O/S: Windows 8 Professional Edition / Version 6.2

 Privelege: USER

 Local Privelege: User

 ScriptDir: \\itcg\netlogon / \\itcg\netlogon

 StartDir: \\itcg\netlogon

 User Process: 1

 Session Type: RDP-Tcp#0

 LP Hard Map: 0

 Debug Level: 1

 Group Membership:

 ITCG\Domain Users

 Everyone

 IHWD001\Users

 IHWD001\Remote Desktop Users

 INTERACTIVE

 CONSOLE LOGON

 Authenticated Users

 This Organization

 LOCAL

40

 ITCG\OG-Development Team

 ITCG\OG-Web Admins

 ITCG\OG-Principals

 ITCG\AC-RD Access - All

 ITCG\OG-Technical Services Team

 ITCG\AC-RD Access - Dev

 ITCG\LG-HQ Users

 ITCG\AC-VPN Users

 ITCG\AC-RD Access - Farm 2

 ITCG\AC-RD Access - Farm 1

 Authentication authority asserted identity

 ITCG\RC-Accounting

 ITCG\PR-NP03

 ITCG\RC-ITCG Internal

 ITCG\RC-ITCG

 ITCG\RC-Multimedia-II

 ITCG\RC-Development

 ITCG\RC-Photos

 ITCG\RC-MSDN

 ITCG\PR-NP01

 ITCG\RC-eBooks

 ITCG\RC-Development-Kix

 ITCG\RC-Development-Internal

 ITCG\RC-Multimedia

 ITCG\RC-SWDist

 ITCG\RC-WebShare

 Mandatory Label\Medium Mandatory Level

 RC-Backup

 Users

 - ENVIRONMENT START -

ALLUSERSPROFILE=C:\ProgramData

APPDATA=C:\Users\glenn\AppData\Roaming

CommonProgramFiles=C:\Program Files (x86)\Common Files

CommonProgramFiles(x86)=C:\Program Files (x86)\Common Files

CommonProgramW6432=C:\Program Files\Common Files

COMPUTERNAME=IHWD001

ComSpec=C:\Windows\system32\cmd.exe

FP_NO_HOST_CHECK=NO

HOMEDRIVE=H:

HOMEPATH=\

HOMESHARE=\\ifpsp01\Users\glenn

KixLibPath=K:\KixLib

LOCALAPPDATA=C:\Users\glenn\AppData\Local

LOGONSERVER=\\IHWIADCP01

NUMBER_OF_PROCESSORS=8

OS=Windows_NT

Path=C:\PROGRA~2\ITCG\bin;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C

:\Windows\System32\WindowsPowerShell\v1.0\;C:\Windows\System32\Windows System

Resource Manager\bin;;C:\Program Files (x86)\jZip;C:\Program Files

(x86)\Microchip\MPLAB C32 Suite\bin;C:\Program Files (x86)\Microchip\MPLAB

IDE\VDI;C:\Program Files (x86)\HI-TECH Software\PICC\PRO\9.65\bin;C:\Program Files

(x86)\Windows Live\Shared

PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC;.KIX;.KX;.KXW;.KW

PROCESSOR_ARCHITECTURE=x86

PROCESSOR_ARCHITEW6432=AMD64

PROCESSOR_IDENTIFIER=Intel64 Family 6 Model 30 Stepping 5, GenuineIntel

PROCESSOR_LEVEL=6

PROCESSOR_REVISION=1e05

ProgramData=C:\ProgramData

ProgramFiles=C:\Program Files (x86)

ProgramFiles(x86)=C:\Program Files (x86)

41

ProgramW6432=C:\Program Files

PROMPT=$CIHWD011$F - PG

PSModulePath=C:\Windows\system32\WindowsPowerShell\v1.0\Modules\

PUBLIC=C:\Users\Public

SESSIONNAME=RDP-Tcp#0

SUID=ITCG\executive

SystemDrive=C:

SystemRoot=C:\Windows

S_BIN=C:\PROGRA~2\ITCG\bin

S_CONFIG=C:\PROGRA~2\ITCG

S_LIB=C:\PROGRA~2\ITCG\Lib

S_LOGS=C:\PROGRA~2\ITCG\Logs

TEMP=C:\Users\GLENN\AppData\Local\Temp

TMP=C:\Users\GLENN\AppData\Local\Temp

USERDNSDOMAIN=ITCG.PVT

USERDOMAIN=ITCG

USERDOMAIN_ROAMINGPROFILE=ITCG

USERNAME=gbarnas

USERPROFILE=C:\Users\glenn

windir=C:\Windows

 - ENVIRONMENT END -

Processing DATA_Fam_F (DISK)

 Eval: 1, Man: 0, IM: 0, IA: 0, Chk: 1

 Member of allowed group RC-Family - continuing.

 Logic: AND, Value: 3, Required: 3

 OK to process this resource!

 PATH Translated: \\ifpsp01\family

 DESC Translated: Family Data

Processing DATA_CORP (DISK)

 Eval: 1, Man: 0, IM: 0, IA: 0, Chk: 1

 Member of allowed group RC-ITCG - continuing.

 Logic: AND, Value: 3, Required: 3

 OK to process this resource!

 PATH Translated: \\ifpsp01\itcg

 DESC Translated: Shared Data

Processing ACCOUNTING (DISK)

 Eval: 13, Man: 8, IM: 4, IA: 0, Chk: 1

 Member of mandatory excluded group RC-ITCG - exiting.

Processing HOME (DISK)

 OK to process this resource!

 PATH Translated: HOME

 DESC Translated: Personal Folder

Processing MSDN (DISK)

 Eval: 1, Man: 0, IM: 0, IA: 0, Chk: 1

 Member of allowed group RC-MSDN - continuing.

 Eval: 0, Man: 0, IM: 0, IA: 0, Chk: 0

 No match in allowed group RC-MSDN_RO - ignored.

 Logic: AND, Value: 3, Required: 3

 OK to process this resource!

42

 PATH Translated: \\ifpsp01\MSDN

 DESC Translated: MSDN Library

Processing eBOOKS (DISK)

 OK to process this resource!

 Creating UNC shortcut resource at TID 9.

 PATH Translated: \\ifpsp01\eBooks

 DESC Translated: eBook Library

 Shortcut creation Enabled.

Processing DEV (DISK)

 Eval: 1, Man: 0, IM: 0, IA: 0, Chk: 1

 Member of allowed group RC-Development - continuing.

 Eval: 0, Man: 0, IM: 0, IA: 0, Chk: 0

 No match in allowed group Domain Admins - ignored.

 Logic: AND, Value: 3, Required: 3

 OK to process this resource!

 PATH Translated: \\ifpsp01\Dev

 DESC Translated: Software Dev

Processing AUDIO (DISK)

 Eval: 1, Man: 0, IM: 0, IA: 0, Chk: 1

 Member of allowed group RC-Multimedia - continuing.

 Eval: 0, Man: 0, IM: 0, IA: 0, Chk: 0

 No match in allowed group RC-Multimedia_RO - ignored.

 Logic: AND, Value: 3, Required: 3

 OK to process this resource!

 PATH Translated: \\ismsp01\Audio

 DESC Translated: Audio Library

Processing MOVIES (DISK)

 Eval: 1, Man: 0, IM: 0, IA: 0, Chk: 1

 Member of allowed group RC-Multimedia - continuing.

 Eval: 0, Man: 0, IM: 0, IA: 0, Chk: 0

 No match in allowed group RC-Multimedia_RO - ignored.

 Logic: AND, Value: 3, Required: 3

 OK to process this resource!

 PATH Translated: \\ismsp01\Movies

 DESC Translated: Movie Library

Processing MATURE MOVIES (DISK)

 Eval: 0, Man: 0, IM: 0, IA: 0, Chk: 0

 No match in allowed group RC-Multimedia-Mature - ignored.

Processing PHOTOS (DISK)

 OK to process this resource!

 Creating UNC shortcut resource at TID 26.

 PATH Translated: \\ismsp01\photos

 DESC Translated: Photo Library

 Shortcut creation Enabled.

Processing MEDIA ROOT (DISK)

 Member of allowed User List - continuing.

 OK to process this resource!

 Creating UNC shortcut resource at TID 27.

 PATH Translated: \\ismsp01\MediaRoot

43

 DESC Translated: Media Library

 Shortcut creation Enabled.

Processing SWDIST (DISK)

 Eval: 1, Man: 0, IM: 0, IA: 0, Chk: 1

 Member of allowed group RC-SWDist - continuing.

 Eval: 0, Man: 0, IM: 0, IA: 0, Chk: 0

 No match in allowed group AC-Workstation Admins - ignored.

 Eval: 0, Man: 0, IM: 0, IA: 0, Chk: 0

 No match in allowed group AC-Server Admins - ignored.

 Eval: 0, Man: 0, IM: 0, IA: 0, Chk: 0

 No match in allowed group Domain Admins - ignored.

 Logic: AND, Value: 3, Required: 3

 OK to process this resource!

 PATH Translated: \\ifpsp01\SWDIST

 DESC Translated: SWDIST Install Point

Processing MOTD_General (MESSAGE)

 OK to process this resource!

 PATH Translated: \\ifpsp01\Users\MOTD.txt

 DESC Translated: Message of the day

Processing MOTD_Admins (MESSAGE)

 requires ADMIN privilege - skipping.

Processing HP4350PCL (PRINT)

 Eval: 1, Man: 0, IM: 0, IA: 0, Chk: 1

 Member of allowed group PR-NP01 - continuing.

 Logic: AND, Value: 3, Required: 3

 OK to process this resource!

 PATH Translated: \\ifpsp01\ihphpm01

 New - Slot 0: HP4350PCL

Processing BR6710 (PRINT)

 Eval: 1, Man: 0, IM: 0, IA: 0, Chk: 1

 Member of allowed group PR-NP03 - continuing.

 Logic: AND, Value: 3, Required: 3

 OK to process this resource!

 PATH Translated: \\ifpsp01\ihpbrc01

 New - Slot 1: BR6710

Processing printer default settings

 Printer \\ifpsp01\ihphpm01: default is soft-set

 Printer \\ifpsp01\ihphpm01: has Default Eligible status

Processing active resources:

 Disk: F \\ifpsp01\family

 Disk: G \\ifpsp01\itcg

 Disk: H HOME

 Disk: I \\ifpsp01\MSDN

 Disk: J \\ifpsp01\eBooks

 Disk: K \\ifpsp01\Dev

 Disk: M \\ismsp01\Audio

 Disk: N \\ismsp01\Movies

 Disk: Y \\ifpsp01\SWDIST

Processing Shortcut Only records

 Disk: UNC \\ismsp01\photos

 Disk: UNC \\icwismsp01\MediaRoot

44

Printer: \\ifpsp01\ihphpm01 S

 SoftMap - Exists

 Pre-existing default

Printer: \\ifpsp01\ihpbrc01 N

 SoftMap - Exists

Message: \\ifpsp01\Users\MOTD.txt [0.1]

The header shows the date & time that the entry occurred as well as some information about

the computer, group membership, and the user environment. Following that are the resource

records that were processed and evaluated. The data on the MVLookup lines represent what

was read from the config file, while the Translated lines represent the result of any Value

Rewrite process. Both the PATH and the DESC lines are processed by MVLookup.

The Test8 resource record has some more complex parameters for Group or OU processing.

The result of the individual evaluations is written to the log in an Eval line.

Processing TEST8 <– the name of the resource record is identified

 Eval: 12, Man: 8, IM: 4, IA: 0, Chk: 0

These are the flags defined by resource processing.

EVAL is the sum of the other 4 flags.

Man is the value of the Mandatory Membership flag, either 0 or 8. When set to 8, it indicates

that the user must be a member of all named groups.

IM is the value of the Inverse Membership flag, either 0 or 4. When set to 4, it indicates that

the user must NOT be a member of the named group.

IA is the value of the Inverse Action flag, either 0 or 2. When set to 2, it inverts the resource

action. That is, if the user is a member of the named group, the action that would normally

occur will not. This option is not regularly used, but is available for special situations.

Chk is the value of the comparison flag, and it indicates that the user has been authorized to

use the resource at a basic level.

Below each Eval: line will be the result status, which describes the conclusion of the logic

process, and the action that will be taken. The action is one of:

Ignored – An access restriction is defined but the current evaluation returned neither an

Allow nor Deny result, so that restriction will be ignored. Further processing will occur to

determine if access to the resource will be permitted.

Continuing – The current evaluation returned an Allow result. The resource will be

permitted as long as any further evaluations do not return a Deny result.

Exiting – The current evaluation returned a Deny result. Access to the resource will be

denied and no further processing will occur

If no restrictions were specified, or an Allow condition was met when restrictions were

specified without a subsequent Deny condition, the message “OK to map this resource” will

appear.

The last section of the log lists the resource records that are being processed. It shows the

resource type, target (where appropriate), and path.

45

Diagnosing Problems

To diagnose resource connection issues, make sure that a LoginDebug.log file is generated,

either by creating the empty file or running the login script with the --d parameter.

Look at the end of the lot to review the mappings that were performed. This lists the resource

type, target ID (drive letter), and path. The two most common issues are incorrect processing

or no processing.

Incorrect Processing – a resource is mapped, but not the desired resource. This often occurs

when multiple resource records share a common target.

 You will need a copy of the config file. Start by locating the resource that was

incorrectly processed and identify the Target value.

 Locate the desired resource record and identify the Target value. It should match the

Target in the incorrect resource record.

 Review the LoginDebug.log file – verify that the desired resources has an “OK to

process this resource” message.

o If there is no “OK to process” message, troubleshoot following the No

Processing method that follows.

o If the “OK to process” message is present, the most likely issue is that the

desired resource is defined before the resource that is processed. This can be

resolved by changing the sequence of resource records so they appear in the

least to most desirable order, or by using the PRIORITY parameter. Add a

PRIORITY=5 to the resource that is preferred, or use Priority values on all

resources that share a common target.

No Processing – the desired resource is not processed. This is generally the result of

specifying a process control that is not met, such as a group or OU membership. For Message

class resources, the defined message file may not be present.

 Using a copy of the config and LoginDebug.log files, review the controls associated

with the resource.

o If OUS have been defined:

 Locate the “User OU” value from the LoginDebug.log file. Make sure

it exists in the OUS defined in the config file. Verify that the spelling

is correct!

o If GROUPS have been defined in the resource:

 Compare the groups in the resource record with those listed in the

Group Membership section of the LoginDebug.log file.

 If no match is found, make sure that the user is a member of the

required groups. The user may need to be a member of multiple groups

if Mandatory membership is enabled. Also, make sure that the group

name and Windows 2000 Compatibility names are the same! A

common problem occurs when a group is created with an incorrect

46

name. The group is then renamed, but the compatibility name retains

the original, non-matching value.

 Review the LoginDebug.log file and examine the results of the

resource in question. If an “exiting” message is displayed, review the

associated group setting.

 If the user was recently added to the AD Group, the old group data

may still be cached by Kixtart. You can manually flush the group

cache via two simple methods:

 Run Kix32.exe /f to flush the cache.

 Delete HKCU\Software\KiXtart\TokenCache from the registry.

The Universal Login Script will automatically delete the token

cache every 7 days. The cycle can be adjusted by editing the

FlushTokenCache parameter in the COMMON section of the

configuration file.

47

Level 2 Debugging
Level 2 debugging is enabled by creating a file called debug.txt in the same folder where the

login script was executed from. During level-2 debugging, no resources are actually mapped,

and no commands are executed. The commands used to perform the resource actions are

displayed/logged so they can be verified prior to use in a production deployment. A

LoginDebug.log file is created automatically when Level 2 debugging is active.

Error Logging
If any errors occur during login processing, error messages are written to the

%UserProfile%\loginerrs.log file. Resources that fail to map are displayed in red. If message

output is suppressed and errors occur, a window will open with the error messages displayed

in red.

Any time an error message is displayed during login, the window will remain open for 15

minutes or until a key is pressed. The Break setting is also enabled to allow the user to close

the login script window without causing a logoff. This provides enough time for a user to see

that an error occurred and contact the help desk with an appropriate message. If the user

closes the error screen, the help desk technician can review the LoginErrs.log file and the

LoginDebug.log file (if present) for details of the error.

Performance Analysis
The login script can write timestamps to a performance log to help identify performance

related issues. Process data is written to %UserProfile%\LoginPerf.log with date and time

stamps accurate to 1ms. A timestamp is written when the script starts, at the start of each

significant block of code, at the start and end of each resource decision, and when the script

completes. Performance analysis is only available when the login script is executed from the

NetLogon share.

Timestamps are enabled by creating a file called “LSPERF.TXT” in the root of the NetLogon

share. When timestamp logging is enabled, the version number displayed during logon will

display a “_ts” suffix, similar to “2.8.0b_ts”.

A typical configuration that evaluates 10-15 drive resources, 6-8 printer resources, and a

small number of message and command resources will usually complete in less than 4

seconds. Larger configurations may take 3-9 seconds to complete. If your login configuration

is taking more than 10 seconds to complete (exclusive of external script processing),

performance logging should be enabled to determine where the delay is occurring. This is

quite often COMMAND resources loading and executing. The log will report the following

for a COMMAND process:

2012/05/02 20:31:00.558 - COMMAND Start: \\DOM\NetLogon\Kix32.exe \\DOM\NetLogon\NoHidden.kix

2012/05/02 20:31:00.605 - - Complete

This shows that the command took 47ms to complete.

Note that performance logging will add a minimal amount of processing and disk I/O to the

login process – usually less than 50ms. Timestamps have an accuracy of 16ms (+/- 8ms).

48

Performance Logging Example

Since this example login process enabled performance logging, let’s look at the resulting file.

The log contents that follow illustrate how the script runs through the authorization and

mapping process, checking a total of 22 resource definitions in just 2.533 seconds.

2013/03/12 15:51:34.071 - Start Login Script

2013/03/12 15:51:34.087 - INI Defined

2013/03/12 15:51:34.144 - License check complete

2013/03/12 15:51:34.228 - Display Start

2013/03/12 15:51:34.328 - Init Complete

2013/03/12 15:51:34.328 - Clear Drive Mappings

2013/03/12 15:51:34.409 - Removing drive F:

2013/03/12 15:51:34.454 - - Complete

2013/03/12 15:51:34.454 - Removing drive G:

2013/03/12 15:51:34.499 - - Complete

2013/03/12 15:51:34.500 - Removing drive I:

2013/03/12 15:51:34.542 - - Complete

2013/03/12 15:51:34.542 - Removing drive J:

2013/03/12 15:51:34.584 - - Complete

2013/03/12 15:51:34.584 - Removing drive K:

2013/03/12 15:51:34.627 - - Complete

2013/03/12 15:51:34.628 - Removing drive N:

2013/03/12 15:51:34.667 - - Complete

2013/03/12 15:51:34.667 - Removing drive P:

2013/03/12 15:51:34.709 - - Complete

2013/03/12 15:51:34.710 - Removing drive Y:

2013/03/12 15:51:34.753 - - Complete

2013/03/12 15:51:34.754 - Removing drive

2013/03/12 15:51:34.804 - - Complete

2013/03/12 15:51:34.804 - Removing drive

2013/03/12 15:51:34.857 - - Complete

2013/03/12 15:51:34.858 - Removing drive

2013/03/12 15:51:34.925 - - Complete

2013/03/12 15:51:34.925 - Removing drive

2013/03/12 15:51:34.982 - - Complete

2013/03/12 15:51:34.983 - Removing drive

2013/03/12 15:51:35.035 - - Complete

2013/03/12 15:51:35.042 - Checking COMMON

2013/03/12 15:51:35.045 - - Complete

2013/03/12 15:51:35.109 - Checking GROUP_BASED_CONFIG

2013/03/12 15:51:35.112 - - Complete

2013/03/12 15:51:35.117 - Checking DATA_F

2013/03/12 15:51:35.149 - DISK Resource

2013/03/12 15:51:35.159 - - Complete

2013/03/12 15:51:35.163 - Checking DATA_CORP

2013/03/12 15:51:35.192 - DISK Resource

2013/03/12 15:51:35.201 - - Complete

2013/03/12 15:51:35.205 - Checking DATA_CORP_Test

2013/03/12 15:51:35.208 - - Complete

2013/03/12 15:51:35.212 - Checking ACCOUNTING

2013/03/12 15:51:35.251 - - Complete

2013/03/12 15:51:35.256 - Checking HOME

2013/03/12 15:51:35.268 - DISK Resource

2013/03/12 15:51:35.279 - - Complete

2013/03/12 15:51:35.284 - Checking MSDN

2013/03/12 15:51:35.336 - DISK Resource

2013/03/12 15:51:35.345 - - Complete

2013/03/12 15:51:35.351 - Checking KixDev

2013/03/12 15:51:35.382 - DISK Resource

2013/03/12 15:51:35.391 - - Complete

2013/03/12 15:51:35.395 - Checking Dev

2013/03/12 15:51:35.430 - DISK Resource

2013/03/12 15:51:35.440 - - Complete

2013/03/12 15:51:35.445 - Checking MUSIC0

2013/03/12 15:51:35.462 - - Complete

2013/03/12 15:51:35.466 - Checking PHOTOS

2013/03/12 15:51:35.499 - DISK Resource

2013/03/12 15:51:35.509 - - Complete

2013/03/12 15:51:35.516 - Checking SWDIST

2013/03/12 15:51:35.529 - DISK Resource

2013/03/12 15:51:35.539 - - Complete

2013/03/12 15:51:35.543 - Checking MOTD_General

2013/03/12 15:51:35.558 - MESSAGE Resource

2013/03/12 15:51:35.568 - - Complete

2013/03/12 15:51:35.573 - Checking MOTD_Admins

2013/03/12 15:51:35.585 - MESSAGE Resource

2013/03/12 15:51:35.597 - - Complete

2013/03/12 15:51:35.602 - Checking MOTD_All

2013/03/12 15:51:35.620 - - Complete

2013/03/12 15:51:35.625 - Checking MOTD_Work

2013/03/12 15:51:35.647 - - Complete

2013/03/12 15:51:35.652 - Checking HP4350PCL

2013/03/12 15:51:35.682 - PRINT Resource

49

2013/03/12 15:51:35.693 - - Complete

2013/03/12 15:51:35.698 - Checking BR6710

2013/03/12 15:51:35.717 - - Complete

2013/03/12 15:51:35.722 - Checking NoHiddenLogon

2013/03/12 15:51:35.749 - COMMAND Resource

2013/03/12 15:51:35.754 - COMMAND: Path Translate

2013/03/12 15:51:35.755 - COMMAND: Args

2013/03/12 15:51:35.764 - COMMAND: Complete!

2013/03/12 15:51:35.764 - - Complete

2013/03/12 15:51:35.764 - Printer Prep Start

2013/03/12 15:51:35.780 - - Complete

2013/03/12 15:51:35.785 - Processing Drive A:

2013/03/12 15:51:35.786 - - Complete

2013/03/12 15:51:35.786 - Processing Drive B:

2013/03/12 15:51:35.787 - - Complete

2013/03/12 15:51:35.787 - Processing Drive C:

2013/03/12 15:51:35.787 - - Complete

2013/03/12 15:51:35.788 - Processing Drive D:

2013/03/12 15:51:35.788 - - Complete

2013/03/12 15:51:35.788 - Processing Drive E:

2013/03/12 15:51:35.789 - - Complete

2013/03/12 15:51:35.789 - Processing Drive F:

2013/03/12 15:51:35.897 - - Complete

2013/03/12 15:51:35.898 - Processing Drive G:

2013/03/12 15:51:36.021 - - Complete

2013/03/12 15:51:36.022 - Processing Drive H:

2013/03/12 15:51:36.029 - - Complete

2013/03/12 15:51:36.029 - Processing Drive I:

2013/03/12 15:51:36.129 - - Complete

2013/03/12 15:51:36.129 - Processing Drive J:

2013/03/12 15:51:36.228 - - Complete

2013/03/12 15:51:36.228 - Processing Drive K:

2013/03/12 15:51:36.285 - - Complete

2013/03/12 15:51:36.285 - Processing Drive L:

2013/03/12 15:51:36.286 - - Complete

2013/03/12 15:51:36.286 - Processing Drive M:

2013/03/12 15:51:36.286 - - Complete

2013/03/12 15:51:36.287 - Processing Drive N:

2013/03/12 15:51:36.287 - - Complete

2013/03/12 15:51:36.288 - Processing Drive O:

2013/03/12 15:51:36.288 - - Complete

2013/03/12 15:51:36.288 - Processing Drive P:

2013/03/12 15:51:36.391 - - Complete

2013/03/12 15:51:36.391 - Processing Drive Q:

2013/03/12 15:51:36.392 - - Complete

2013/03/12 15:51:36.392 - Processing Drive R:

2013/03/12 15:51:36.393 - - Complete

2013/03/12 15:51:36.393 - Processing Drive S:

2013/03/12 15:51:36.394 - - Complete

2013/03/12 15:51:36.394 - Processing Drive T:

2013/03/12 15:51:36.395 - - Complete

2013/03/12 15:51:36.395 - Processing Drive U:

2013/03/12 15:51:36.396 - - Complete

2013/03/12 15:51:36.396 - Processing Drive V:

2013/03/12 15:51:36.397 - - Complete

2013/03/12 15:51:36.397 - Processing Drive W:

2013/03/12 15:51:36.397 - - Complete

2013/03/12 15:51:36.398 - Processing Drive X:

2013/03/12 15:51:36.398 - - Complete

2013/03/12 15:51:36.399 - Processing Drive Y:

2013/03/12 15:51:36.504 - - Complete

2013/03/12 15:51:36.504 - Processing Drive Z:

2013/03/12 15:51:36.505 - - Complete

2013/03/12 15:51:36.506 - Processing Printer 0

2013/03/12 15:51:36.523 - - Complete

2013/03/12 15:51:36.643 - COMMAND Start: Kix32.exe \\CORP\NetLogon\NoHiddenLogon.kix

2013/03/12 15:51:36.696 - - Complete

2013/03/12 15:51:36.697 - Login Script Complete

50

Configuration Examples
The supplied login.ini file is rich with examples, from the basic to the very complex. It

contains comments to help you understand the parameters that were selected. The examples

here will walk you through some configuration scenarios with a “problem solving” approach.

Basic Configuration Scenarios

Process a Resource for All Users

The most basic mapping – all users that run the login script will map this resource.

[AllUsers]

CLASS=Disk

PATH=\\server\share

TARGET=G

With no authorization parameters present, every user will map this resource. The only thing

you might add to this is a DESC parameter to provide a description!

Display Alert for All Admins

A message file will be displayed for all admin-level logins to remind the user to proceed with

caution. Red text is used for emphasis, and a 5-second delay is defined.

[AllAdminMessage]

CLASS=Message

PATH=\\server\share\Message

DESC=Admin Alert!

COLOR=Red

DELAY=5

PRIV=Admin

Process a Resource for Members of One or More Groups

A common task – map a resource based on group membership. In this case, all members of

either the Finance or Accounting groups will map the drive.

[FinanceShare]

CLASS=Disk

PATH=\\server\share

TARGET=G

GROUPS=Finance,Accounting

Process a Resource for Multiple Group Membership

This will process a resource when a user is a member of two or more groups, allowing

complex authorization methods. Very similar to the previous example, the addition of a

leading “+” to the GROUPS list will require membership in all of the listed groups instead of

any of the listed groups.

[FinanceShare]

CLASS=Disk

PATH=\\server\share

TARGET=G

GROUPS=+,Finance,Accounting

51

Process a Resource via AD Attribute

A common need but often difficult – map a resource based on a user being in the Accounting

Department according to their AD Attribute, not Group or OU membership.

[FinanceShare]

CLASS=Disk

PATH=\\server\share

TARGET=G

ADATTR=Department:Accounting

Process a Resource Based on OU

OU-based mapping examines the entire DN string for the current user. A DN string looks

like this: CN=smith\, John,OU=department 3,OU=Users,DC=Fabricam,DC=com. The OU

matching logic ignores the CN= and DC= components and examines just the OU=

components. If any of the OUs listed are found in an OU= component of the DN string, it is

considered a match. The OU must match the exact “OU=name,” part of the string to be valid,

including the leading “OU=” and the trailing comma. This example maps the resource for

objects contained in either of the HelpDesk or IT OUs.

[TechServices]

CLASS=Disk

PATH=\\server\share

TARGET=T

OUS=HelpDesk,IT

Process a Resource Based on Group and OU

In this example, a user must be a member of the Accounting group, and should be in the

Central Division OU. The Accounting group contains members from East, Central, and West

Division OUs. By specifying both Group and OU parameters, we can restrict the resource to

just members of the Accounting group located in the Central Division.

[Central Accounting]

CLASS=Disk

PATH=\\server\share

TARGET=F

OUS=Central Division

GROUPS=Accounting

If we wanted to map the resource if a user was a member of the Accounting group or the

Central Division OU, we could add the following line to this resource record:

LOGIC=OR

This changes the comparison of Group, OU, and AD Attribute parameters from an AND

condition (all requirements must be met) to an OR condition (either requirement is met).

Displaying a Message During Logon

A message contained in a text file can be displayed during logon. The file can be on a

mapped drive or specified as a UNC path. The file format must be plain text. Each message

is terminated with a line of dashes, and a default delay of 2 seconds is performed unless a

specific delay is defined. The color of the text for the message body can be specified, and a

short header can be defined using the DESC parameter.

52

;Message for All Users

[MessageOfTheDay]

CLASS=MESSAGE

PATH=\\server\share\MOTD.txt

DESC=Message of the Day

COLOR=Yellow

;Message for Admin Users

[AdminWarning]

CLASS=MESSAGE

PATH=AdminWarning.txt

PRIV=admin

DESC=Administrator Access

COLOR=Red

If the PATH value is not rooted to a specific location, the script will check the directory

where the login script started and then the root of the NetLogon share (if different). This

allows message files to be placed on the NetLogon share rather than a specific server/share.

Message processing occurs after all drives are mapped so that mapped resources can be used

to reference the message text files.

Note that the second example uses a non-rooted file in the PATH. This will be found on the

NetLogon or Startup folder. The PRIV parameter restricts this message to users with local

administrative access, and displays in red to get their attention.

Running a Command

Commands are often run during logon to customize the user environment. Depending on the

level of local access, many different types of tasks can be performed. The example below

runs a Kixtart script that prompts the user to choose one of 3 available and authorized screen

saver formats. The Kix32.exe in the PATH parameter is non-rooted and will be run by

default from the NetLogon share. The argument to Kix32.exe is the fully-qualified path to the

script, including any script arguments. This uses the Shell method to invoke a new Kix32

instance to insure isolation from the login script environment.

[SetScreenSaver]

CLASS=COMMAND

PATH=Kix32.exe

ARGS=\\%USERDOMAIN%\NetLogon\UserScreenSaver.kix

A similar form is shown below. Using the Call method, it uses the login script instance of

Kix32 for faster loading and execution. The Kixtart script was validated to not interfere with

any of the global variables or UDFs in the login script.

[SetScreenSaver]

CLASS=COMMAND

METHOD=Call

PATH=\\%USERDOMAIN%\NetLogon\UserScreenSaver.kix

53

Acceptable Use Policy Message

Companies often wish to display a message defining the acceptable use of the computer and

network resources during logon, and force a logoff if the user does not accept the policy. This

can be accomplished using a MESSAGE resource and defining a PROMPT parameter. While

the message file must exist, it can be empty or simply a “please review & accept the

acceptable use policy to continue your access.”

The following configuration displays a popup message that will log the user off if they do not

accept the policy. The UsePolicy.txt is an empty file in the root of the NetLogon share.

[Use Policy]

CLASS=MESSAGE

PATH=UsePolicy.txt

PROMPT=1;Acceptable Use Policy; legal notice here…\n\nDo you accept these

terms?;;LOGOFF

Note that the PROMPT text must all be on one line – it is wrapped here to fit the page. The

“legal notice here…” would be replaced with up to 1024 characters containing your

acceptable use policy. No action is needed for a Yes response, so the field between the

message and NO_Action is empty. The NO_Action is “Logoff”, which forces an immediate

logoff of the user. At this time, the only available action is “Logoff”.

You can use the “\n” in your message text to force a line break at that point. This is

illustrated in the example above.

54

Advanced Configuration Scenarios

Configuring Branch Office or Department Shares with Value Rewrite

Assumptions:

 Each branch office or department is defined by a unique OU

 The OUOffset is properly defined based on the configuration of your DN string.

 Branch offices have specific share folders (\\server\shares\Dept_12)

 Branch office shares all map their primary share to the same drive letter (S:)

The first step is to define the share entry in the configuration file that uses Path Rewriting:

[DeptShare]

CLASS=DISK

TARGET=S

PATH=&OU:DeptMap& <- this is the path rewrite entry, defining the DeptMap record.

A set of mapping records is also required. If you have already configured a department share

and mapping records, and are simply adding mapping for a new department, the resource

record and mapping record will already exist. Identify the Path Rewrite section and just add a

record for the new department to it.

[DeptMap]

Dept 11=\\server\shares\Dept_11

Dept 12=\\server\shares\Dept_12

This configuration will identify the OU that a user is a member of, search the mapping record

table for a match, and connect the share that was found (if any) to the target drive letter.

The first time you create a rewrite map table, you need to enter all of the department OU

names. Later, as new departments or branch offices are added, you simply add a new entry to

the rewrite map table, linking the share resource to the department’s OU.

Note: The rewrite table does not need to be an entire UNC path. If you have multiple file

servers with identical shares and resources, the lookup can be simply the server name, which

would allow the same lookup table to be used for several paths being rewritten. Similarly,

you might have one file server with several department-specific shares. This is especially

useful with Site or Subnet rewrites. For example:

[DeptShare] [DeptShare]

CLASS=DISK CLASS=DISK

TARGET=S TARGET=S

PATH=&OU:DeptMap&\share PATH=\\server\&OU:DeptMap&

[DeptMap] [DeptMap]

Dept 11=\\server11 Dept 11=Dept_11

Dept 12=\\server12 Dept 12=Dept_12

The left column illustrates basic server name substitution while the right column illustrates

share name substitution.

55

Adding a Second Department to an Existing Share

Another common scenario is when a “parent” department needs access to “child”

departments. One example might be that the “Accounting” OU members need access to their

“Accounting Dept” share, but also the “Receivables” share that the AR department uses.

Locate the resource record for the Receivables share:

[ARDeptShare] [ARDeptShare]

CLASS=DISK CLASS=DISK

TARGET=S TARGET=S

PATH=\\server\receivables PATH=\\server\receivables

OU=AR Dept OU=AR Dept,Accounting Dept

Add the “,Accounting Dept” OU name to the list of OUs that can access this share. Once this

is done, users of both departments will be able to utilize this drive mapping after the next

logon.

Using Configuration Sets

Configuration sets allow a single configuration file to support the needs of multiple regions

or departments without depending on OU structure or group membership. The name of the

configuration set is specified on the command line when the login script is executed. Only

resource records with matching CFGSET parameters are executed, along with resource

records that do not have a CFGSET parameter. These are considered global or common

resources and will map for all users.

Start by creating the resource records used by all users. Recognize that some of these may be

overridden by CFGSET-specific records.

Add the CFGSET-specific records just like any other, but include the CFGSET value.

[DeptShare]

CLASS=DISK

TARGET=S

PATH=\\server\share

CFGSET=MARKETING

PRIORITY=5

The priority insures that this record will take precedence over any common records,

regardless of the sequence of the records in the config file. When the login script is invoked

with

Kix32.exe Kixtart.kix -–c MARKETING

all of the common records and records with CFGSET=MARKETING will be processed,

ignoring all other records that have different CFGSET values. All Value Rewrite and other

features are supported as expected.

Alternate or Sub-Folder Mapping

Consider the following situation – the finance team has access to a share that contains the

accounting data folder as well as other subfolders for documents & correspondence,

spreadsheets, and other corporate data. The external accounting firm should be able to access

the accounting data but not the other data files. Both regular users and the external

56

accountants will map the data to the G: drive. In this case we will use two Resource Records

and employ Mandatory group membership.

; Map finance data share to G: if a member of the "finance" group

[FIN_DATA_CORP]

CLASS=DISK

TARGET=G:

PATH=\\fpsp01\FinanceData

DESC=Shared Finance Data

GROUPS=AC-Finance

; Map the accounting folder to the G: drive for accountant access

[FIN_DATA_ACCOUNTANT]

CLASS=DISK

TARGET=G:

PATH=\\fpsp01\FinanceData\accounting

DESC=Accounting Data

GROUPS=+,!AC-Finance,AC-Accountants

The first record maps the resource root to the G: drive for members of the AC-Finance group.

When a member of AC-Finance logs in, the first record is permitted and added to the process

list. When the second record is evaluated it is determined that mandatory group membership

is enabled (leading “+”). Negation is applied to the AC-Finance group, so members of the

AC-Accountants group who are NOT members of the AC-Finance group will be permitted.

The use of negation insures that internal finance team members process the first resource and

ignore the second. External accountants, being members of AC-Accountants and not AC-

Finance, process the second record.

Gross Access Filtering – Admin, Guest, or NoGuest

This example covers a less-common situation. The art department has full-time and freelance

graphic artists. All are members of the AC-Media group with access to other media shares.

One of the shares contains the photos of employees used for security badges and corporate

events. These photos should be restricted only to authorized employees. The freelance artists

are members of Domain Guests instead of Domain Users, restricting their rights outside of

the Media shares. We can take advantage of this by allowing access to the employee photo

share to members of the AC-Media group, but restrict access from anyone with Guest level

access. The configuration below permits only the full-time employees of the AC-Media

group to access the share.

[EMPLOYEE_PHOTOS]

CLASS=DISK

TARGET=P:

PATH=\\fpsp01\ephotos

DESC=Employee Photo Library

PRIV=NoGuest

GROUPS=AC-Media,domain admins

PRIORITY=1

57

Compound Value Rewrites

Compound rewriting is a powerful concept that significantly extends the resource mapping

process. For example, you might have several departments that need access to departmental

shares. If each department is represented by an OU, this becomes a fairly simple OU:table

type lookup. If, however, you need to change the server that you connect to based on the

network subnet that the user is in, a compound, or recursive lookup can be employed.

The simple vs. compound / recursive lookups would be:

[DeptShare] [DeptShare]

CLASS=DISK CLASS=DISK

TARGET=P TARGET=P

PATH=&OU:DeptByOU& PATH=&OU:DeptByOU&

[DeptByOU] [DeptByOU]

OU1=\\server\share1 OU1=&SUBNET:Dept1BySubnet&\share1

OU2=\\server\share2 OU2=&SUBNET:Dept2BySubnet&\share2

 [Dept1BySubnet]

 192.168.32.0=\\server1

 192.168.34.0=\\server2

 [Dept2BySubnet]

 192.168.32.0=\\server1

 192.168.34.0=\\server2

In the first example, members of OU1 are simply mapped to \\server\\share1. In the second

example, members of OU1 perform a lookup that points to a department specific subnet

lookup. The ByDeptOU defines the share name but requires a recursive lookup to define the

server. The second lookup sets the server name. Thus, if a user is in OU1 and in the

192.168.34.0 network, their resource would be mapped to \\server2\share1.

58

Group Based Config-File Selection
This offers a unique ability to automatically select a configuration file based on Active

Directory group membership. This capability can impact performance of the script if not

properly configured and thus deserves some special attention. Due to the additional overhead

of reading multiple configuration files, it is recommended that this feature be used to

facilitate migration and consolidation efforts rather than permanent production use.

In most cases, lookup tables and Value Rewrite will provide the flexibility required for most

complex configurations. Beyond this, placing the script and config file into specific folders

and defining the login script as “kix32.exe Folder\kixtart.kix” can easily accommodate

regional script requirements with unique configuration files. Similarly, user profiles can

define specific configuration files with the “--i filename” or the “--c CfgSetID”

parameters.

When the other options don’t offer the flexibility, the automatic configuration file selection

method allows the script to dynamically switch the configuration file when the user is a

member of a specific group. This can simplify the login script configuration settings in the

user profile, eliminating any arguments and maintaining a flat NetLogon folder structure. To

effectively implement this, some important guidelines should be followed.

 AD Groups – the groups should be used specifically to define which login script

configuration to use. These groups should not contain other nested groups, and users

should only be a member of a single group that defines the login configuration.

Should a user be a member of multiple groups, only the first one matched will be

used, and all others ignored. This may be in conflict with the recommendation below.

Using generic groups or allowing multiple group membership will lead to confusion

and potentially incorrect resource processing.

 Performance on Slow Links – The login script is designed to run efficiently even on

slow (64Kbps or dialup) links through configuration file caching. Since this logic

controls which configuration file will be used, the queries needed to make this

decision will be made to the network (netlogon) copy of the configuration file and not

the cached copy. If a large number of queries must be made, the login performance

will be affected. This can be minimized by placing the definitions with slower

connection speeds first in the lookup list, minimizing the number of queries to make

over the slow links. This will not have significant impact on faster WAN links or

LAN connections.

 Sequence of Configuration File Selection – the script starts by making “login.ini”

the active config file. It then checks for a configuration file specified on the command

line, a config file matched by group membership, a computer-specific file, and finally

a user-specific file.

The process insures that a configuration file is always available for use, starting with

the most generic to the most specific. If the “login.ini” file is not present, the script

will exit gracefully with an error in the log.

59

GUI Administration Console
The GUI administration console provides a simplified interface for editing the ULS

configuration files. The console allows any authorized user to open a configuration file and

dynamically change the configuration settings without any programming or even INI file

editing experience.

The current revision of the admin console allows control of all COMMON settings, all

standard Resource settings, and basic editing of all lookup tables (standard and user-defined).

The user-defined (USER_name) Resource Record parameters are free-form and thus require

the user to edit the configuration file directly. The ability to query AD for lists of users,

groups, OUs, and Sites (used on the Resources tab) is planned for a future release. These

objects must currently be entered manually, as they would be if the configuration file was

edited directly.

The ULS Admin Console main screen

is shown here. All input is locked until

a config file is loaded or created. Once

the admin console is associated with a

configuration file, any changes made

on the screen will update the file

immediately upon clicking the Save

button. Any change will set a

MODIFIED flag, displayed in the

bottom-right of the status bar, and will

prevent the user from switching tabs.

A warning will be displayed if the user

tries to close the console from a

modified state. Clicking the Cancel

button will reload the data on the

displayed tab and clear the

MODIFIED status.

Several of the controls are interlocked – the Ignore Mappings checkboxes are enabled only

when Clear Drive Mappings is enabled; the Display Settings are disabled if Run Silent is not

enabled; and the NAC configuration settings are enabled only when NAC support is enabled.

The toolbar has buttons to Open a file; create a New file; and Edit the active file using

Notepad. These functions are mirrored on the File menu.

NOTE: Creating a new file will start with an empty config file – Boolean values will be

written as displayed, but value fields will be removed if blank. The ULS application employs

sane default settings and does not require any parameters defined in the Common section.

NOTE: Opening the active configuration file in Notepad will lock the Admin Console

against any input. The status bar will show * LOCKED * in the status field and “NOTEPAD

ACTIVE” in the Warning field. Input will be ignored, and the Admin Console may report

“not responding” while Notepad is running. When Notepad is closed and the file saved, any

changes made in Notepad will automatically be reflected in the display.

60

On the Resource Records tab, you

can browse any of the records in

the config file or create a new

record. Selecting a Resource ID

will automatically load all of the

appropriate data fields, and may

display a class-specific group of

input fields for Printers,

Messages, and Commands. Like

the Common tab, certain

Common settings are interlocked

to the resource Class as Target

and Error Control are not used by

Message or Command records.

The Class field is unlocked only

when New Record is selected.

When an existing record is

selected, the Class is set to the

record’s defined class and cannot be changed.

The Cancel button will discard any changes, clear the Modified status, and reload the current

resource record’s data.

The Delete button will prompt for confirmation of the delete if a valid record is selected, and

– if confirmed – will permanently remove the selected Resource ID from the active

configuration file. The Delete button is ignored when New_Resource is selected.

The Save button will save the currently defined settings to the configuration file. Note that if

you remove the text from a field, the corresponding attribute will be removed from the

resource record. A check is performed when Save is clicked to insure that any required fields

have data. If these fields are not complete, a warning dialog will display to identify the

missing data. Currently, the Class and Path are required for all records, and the Target is

required for Disk records. All other fields are optional. If you click Save when

New_Resource is active, you will be prompted for the name of a new resource. If you enter

an existing resource name, the save will be aborted and a warning displayed in the status bar.

NOTE: The Cancel, Save, and Delete buttons are specific to each tab. If you modify data on

one tab, you cannot select a different tab until the changes are saved or canceled.

When the configuration file is first loaded, the Resource Records tab will be blank. You must

select a Resource ID from the list to populate the fields. Once a Resource ID is selected, you

can scroll through the resource records with the up/down cursor keys or the mouse scroll-

wheel.

FUTURE: The small button to the right of each of the Authorization fields will allow the

operator to lookup objects for the defined field. Any object selected will be added to the

field.

61

The remaining tabs (Default Printer,

Lookup Tables, & Group Based

Config) have a single field that allows

all related records to be edited in a text

window. The user must maintain

proper formatting of these records.

The Lookup Tables tab is show here

and has a drop-down field to select one

of the detected lookup tables. The other

tabs are similar but do not have a

selection field as they represent only a

single lookup table.

The Save, Delete, and Cancel buttons

affect all of the data in the edit

window. As the editing window is

fairly small, we recommend that

Notepad be used for editing these

sections when more than a few records are defined. If you need to delete a single entry in the

table, select the line of text and press the delete key.

Installing the GUI Admin Tool

The Universal Login Script package includes a Management folder. Make this folder

available to the computer where you wish to install the ULS Admin tool. You may share the

Management folder from a central server or copy the folder and its contents to the TEMP

folder of the local computer. We recommend launching a command prompt and running the

SETUP.BAT file from the command line so that any messages can be reviewed.

No prep or arguments are needed – simply run the SETUP.BAT file. The installer will create

the installation in %PROGRAMFILES(X86)%\ITCG, register the Kixforms.dll file, and

create a shortcut on the Start Menu in an ITCG Tools folder.

62

Technical Support

Feedback

We welcome your feedback – comments & suggestions from our users is how the products

we produce improve. You can contact us at Support@innotechcg.com – please use “Login

Script” in the subject line to help route it quickly to the right team. We listen! Recent user

suggestions have resulted in improvements such as

 Division-specific config files

 Multi-language support

 Subnet-based Path Rewriting

 User-defined access controls

 Per Computer printer defaults

Support

Having problems making something work the way you want? Drop us a line! Users of our

login script can make use of two free email-based support instances. We’ll help you find a

solution to those tough resource allocation challenges, or debug why a resource isn’t

mapping as you might expect it to.

We also offer commercial support, ranging from setting up your entire configuration file to

writing custom enhancements. Fees are reasonable and payable through PayPal and most

credit cards. Support is available via email (24x7 with 24-hour response) or by phone

(weekdays, 7am-8pm, EST) at 973-272-2667.

See our web site for current support rates.

When you request support, please include the following items in a Zip file attachment:

 A copy of your login.ini file.

 A LoginDebug.log file with the result of a login or test process.

(create an empty %USERPROFILE%\LoginDebug.log and log in).

 The LoginPerf.log file (if enabled) with process timestamps. This should be enabled

and included any time that performance is a concern.

 Any error files that result from a login process – see

%USERPROFILE%\LoginErr.Log. A capture of any O/S error messages on the

screen would also be helpful.

Send your question and Zip file with the above files to support@innotechcg.com, with a

subject line of “Login Script Support”. Although unnecessary, feel free to obfuscate any

server names in your configuration and log files.

mailto:Support@innotechcg.com
mailto:support@innotechcg.com

63

Appendix 1

Language Locale IDs
These are the ID numbers that represent the various language locale IDs. To support Danish

language messages, for example, a file called lsl_2067.lng would be placed into the netlogon

share where the login script files are.

1078 Afrikaans

1052 Albanian

1118 Amharic (Ethiopia)

5121 Arabic (Algeria)

15361 Arabic (Bahrain)

3073 Arabic (Egypt)

2049 Arabic (Iraq)

11265 Arabic (Jordan)

13313 Arabic (Kuwait)

12289 Arabic (Lebanon)

4097 Arabic (Libya)

6145 Arabic (Morocco)

8193 Arabic (Oman)

16385 Arabic (Qatar)

1025 Arabic (Saudi Arabia)

10241 Arabic (Syria)

7169 Arabic (Tunisia)

14337 Arabic (U.A.E.)

9217 Arabic (Yemen)

1067 Armenian

1101 Assamese

2092 Azeri (Cyrillic)

1068 Azeri (Latin)

1069 Basque

1059 Belarusian

2117 Bengali (Bangladesh)

1093 Bengali (India)

5146 Bosnian

(Bosnia/Herzegovina)

1026 Bulgarian

1109 Burmese

1027 Catalan

3076 Chinese (Hong Kong S.A.R.)

5124 Chinese (Macau S.A.R.)

2052 Chinese (PRC)

4100 Chinese (Singapore)

1028 Chinese (Taiwan)

1050 Croatian

4122 Croatian

(Bosnia/Herzegovina)

1029 Czech

1030 Danish

1125 Divehi

2067 Dutch (Belgium)

1043 Dutch (Netherlands)

1126 Edo

3081 English (Australia)

10249 English (Belize)

4105 English (Canada)

9225 English (Caribbean)

16393 English (India)

6153 English (Ireland)

8201 English (Jamaica)

5129 English (New Zealand)

13321 English (Philippines)

7177 English (South Africa)

11273 English (Trinidad)

2057 English (United Kingdom)

1033 English (United States)

12297 English (Zimbabwe)

1061 Estonian

1080 Faroese

1065 Farsi

1124 Filipino

1035 Finnish

2060 French (Belgium)

11276 French (Cameroon)

3084 French (Canada)

9228 French (Congo, DRC)

12300 French (Cote dIvoire)

1036 French (France)

5132 French (Luxembourg)

64

13324 French (Mali)

6156 French (Monaco)

14348 French (Morocco)

10252 French (Senegal)

4108 French (Switzerland)

7180 French (West Indies)

1122 Frisian (Netherlands)

1071 FYRO Macedonian

2108 Gaelic Ireland

1084 Gaelic Scotland

1110 Galician

1079 Georgian

3079 German (Austria)

1031 German (Germany)

5127 German (Liechtenstein)

4103 German (Luxembourg)

2055 German (Switzerland)

1032 Greek

1140 Guarani (Paraguay)

1095 Gujarati

1037 Hebrew

1279 HID (Human Interface

Device)

1081 Hindi

1038 Hungarian

1039 Icelandic

1136 Igbo (Nigeria)

1057 Indonesian

1040 Italian (Italy)

2064 Italian (Switzerland)

1041 Japanese

1099 Kannada

1120 Kashmiri

1087 Kazakh

1107 Khmer

1111 Konkani

1042 Korean

1088 Kyrgyz (Cyrillic)

1108 Lao

1142 Latin

1062 Latvian

1063 Lithuanian

2110 Malay (Brunei Darussalam)

1086 Malay (Malaysia)

1100 Malayalam

1082 Maltese

1112 Manipuri

1153 Maori (New Zealand)

1102 Marathi

1104 Mongolian (Cyrillic)

2128 Mongolian (Mongolia)

1121 Nepali

0 None

1044 Norwegian (Bokmal)

2068 Norwegian (Nynorsk)

1096 Oriya

1045 Polish

1046 Portuguese (Brazil)

2070 Portuguese (Portugal)

1094 Punjabi

1047 Rhaeto-Romanic

1048 Romanian

2072 Romanian (Moldova)

1049 Russian

2073 Russian (Moldova)

1083 Sami Lappish

1103 Sanskrit

3098 Serbian (Cyrillic)

2074 Serbian (Latin)

1072 Sesotho

1113 Sindhi

1115 Sinhalese (Sri Lanka)

1051 Slovak

1060 Slovenian

1143 Somali

1070 Sorbian

11274 Spanish (Argentina)

16394 Spanish (Bolivia)

13322 Spanish (Chile)

9226 Spanish (Colombia)

5130 Spanish (Costa Rica)

7178 Spanish (Dominican

Republic)

12298 Spanish (Ecuador)

17418 Spanish (El Salvador)

4106 Spanish (Guatemala)

65

18442 Spanish (Honduras)

3082 Spanish (International

Sort)

2058 Spanish (Mexico)

19466 Spanish (Nicaragua)

6154 Spanish (Panama)

15370 Spanish (Paraguay)

10250 Spanish (Peru)

20490 Spanish (Puerto Rico)

1034 Spanish (Traditional Sort)

14346 Spanish (Uruguay)

8202 Spanish (Venezuela)

1072 Sutu

1089 Swahili

1053 Swedish

2077 Swedish (Finland)

1114 Syriac

1064 Tajik

1097 Tamil

1092 Tatar

1098 Telugu

1054 Thai

1105 Tibetan

1073 Tsonga

1074 Tswana

1055 Turkish

1090 Turkmen

1058 Ukrainian

1056 Urdu

2115 Uzbek (Cyrillic)

1091 Uzbek (Latin)

1075 Venda

1066 Vietnamese

1106 Welsh

1076 Xhosa

1085 Yiddish

1077 Zulu

66

Appendix 2

Common AD Attributes
The following is a list of common AD Attributes that can be used for the ADATTR

parameter and the AD based Value Rewrite features. Note that this list is only an example of

the most common (and most commonly populated) attributes and is by no means exhaustive.

Any valid attribute name may be used.

Attribute Name Description

streetAddress Street Address where user is located

L City (locale) where the user is located

postalCode ZIP or Postal Code where the user is located

physicalDeliveryOfficeName Office name

description Description of account

co, c, or countryCode Country (code) where the user is located

title User’s job title

department Business Department where user works

company Name of company where user works

manager Name of person the user works for

There are many online resources that can provide a complete list of AD/LDAP attributes,

some of which include:

http://www.selfadsi.org/

http://www.rlmueller.net/References/Schema.xls (XLS file download)

While there are hundreds of attributes, only a small number of them make sense to use to

authorize resource access or in Value Rewrite operations.

http://www.selfadsi.org/
http://www.rlmueller.net/References/Schema.xls

